
CSAMA 2014: RNA-Seq differential expression workflow

Michael Love1∗, Simon Anders2, Wolfgang Huber2

1 Department of Biostatistics, Dana Farber Cancer Institute and

Harvard School of Public Health, Boston, US;

2 European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

∗michaelisaiahlove (at) gmail.com

June 30, 2014

Abstract

This lab will walk you through an end-to-end RNA-Seq differential expression workflow. We
will start from the FASTQ files, align to the reference genome, prepare gene expression values as
a count table by counting the sequenced fragments, perform differential gene expression analysis,
and visually explore the results.

This lab covers the basic introduction. For a more in-depth explanation of the advanced
details, we advise you to proceed to the vignette of the DESeq2 package package, Differential
analysis of count data – the DESeq2 package. For a treatment of exon-level differential expression,
we refer to the vignette of the DEXSeq package, Analyzing RNA-seq data for differential exon
usage with the DEXSeq package.

Contents

1 Input data 1
1.1 Preparing count matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Aligning reads to a reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Example BAM files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Counting reads in genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 The DESeqDataSet, column metadata, and the design formula . . . . . . . . . . . . . 7
1.6 Collapsing technical replicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Running the DESeq2 pipeline 11
2.1 Preparing the data object for the analysis of interest . . . . . . . . . . . . . . . . . . . 11
2.2 Running the pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Inspecting the results table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Other comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Adding gene names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html


CSAMA 2014: RNA-Seq differential expression workflow 2

3 Further points 18
3.1 Multiple testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Diagnostic plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Independent filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Exporting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Gene-set enrichment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Working with rlog-transformed data 31
4.1 The rlog transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Sample distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Gene clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Session Info 37

1 Input data

As example data for this lab, we will use publicly available data from the article by Felix Haglund et
al., Evidence of a Functional Estrogen Receptor in Parathyroid Adenomas, J Clin Endocrin Metab, Sep
20121.

The purpose of the experiment was to investigate the role of the estrogen receptor in parathyroid
tumors. The investigators derived primary cultures of parathyroid adenoma cells from 4 patients. These
primary cultures were treated with diarylpropionitrile (DPN), an estrogen receptor β agonist, or with
4-hydroxytamoxifen (OHT). RNA was extracted at 24 hours and 48 hours from cultures under treatment
and control. The blocked design of the experiment allows for statistical analysis of the treatment effects
while controlling for patient-to-patient variation.

Part of the data from this experiment is provided in the Bioconductor data package parathyroidSE .

1.1 Preparing count matrices

As input, the DESeq2 package expects count data as obtained, e. g., from RNA-Seq or another high-
throughput sequencing experiment, in the form of a matrix of integer values. The value in the i-th
row and the j-th column of the matrix tells how many reads have been mapped to gene i in sample j.
Analogously, for other types of assays, the rows of the matrix might correspond e. g. to binding regions
(with ChIP-Seq) or peptide sequences (with quantitative mass spectrometry).

The count values must be raw counts of sequencing reads. This is important for DESeq2 ’s statistical
model to hold, as only the actual counts allow assessing the measurement precision correctly. Hence,
please do not supply other quantities, such as (rounded) normalized counts, or counts of covered base
pairs – this will only lead to nonsensical results.

1http://www.ncbi.nlm.nih.gov/pubmed/23024189

http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.ncbi.nlm.nih.gov/pubmed/23024189


CSAMA 2014: RNA-Seq differential expression workflow 3

1.2 Aligning reads to a reference

The computational analysis of an RNA-Seq experiment begins earlier: what we get from the sequencing
machine is a set of FASTQ files that contain the nucleotide sequence of each read and a quality score at
each position. These reads must first be aligned to a reference genome or transcriptome. It is important
to know if the sequencing experiment was single-end or paired-end, as the alignment software will require
the user to specify both FASTQ files for a paired-end experiment. The output of this alignment step is
commonly stored in a file format called BAM.

A number of software programs exist to align reads to the reference genome, and the development is
too rapid for this document to provide a current list. We recommend consulting benchmarking papers
that discuss the advantages and disadvantages of each software, which include accuracy, ability to align
reads over splice junctions, speed, memory footprint, and many other features.

Here we use the TopHat2 spliced alignment software2 [?] in combination with the Bowtie index available
at the Illumina iGenomes page3. For full details on this software and on the iGenomes, users should
follow the links to the manual and information provided in the links in the footnotes. For example, the
paired-end RNA-Seq reads for the parathyroidSE package were aligned using TopHat2 with 8 threads,
with the call:

tophat2 -o file_tophat_out -p 8 genome file_1.fastq file_2.fastq

samtools sort -n file_tophat_out/accepted_hits.bam _sorted

The second line sorts the reads by name rather than by genomic position, which is necessary for counting
paired-end reads within Bioconductor. This command uses the SAMtools software4 [?]. The BAM files
for a number of sequencing runs can then be used to generate count matrices, as described in the
following section.

1.3 Example BAM files

Besides tha main count table, which we will use later, the parathyroidSE package also contains a small
subset of the raw data from the Haglund et al. experiment, namely three BAM file each with a subset
of the reads from three of the samples. We will use these files to demonstrate how a count table can be
constructed from BAM files. Afterwards, we will load the full count table corresponding to all samples
and all data, which is already provided in the same package, and will continue the analysis with that
full table.

We load the data package with the example data

library( "parathyroidSE" )

The R function system.file can be used to find out where on your computer the files from a package
have been installed. Here we ask for the full path to the extdata directory, which is part of the

2http://tophat.cbcb.umd.edu/
3http://tophat.cbcb.umd.edu/igenomes.html
4http://samtools.sourceforge.net

http://samtools.github.io/hts-specs
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://tophat.cbcb.umd.edu/
http://tophat.cbcb.umd.edu/igenomes.html
http://samtools.sourceforge.net


CSAMA 2014: RNA-Seq differential expression workflow 4

parathyroidSE package:

extDataDir <- system.file("extdata", package = "parathyroidSE", mustWork = TRUE)

extDataDir

## [1] "/home/oles/R/R-3.1.0/library/parathyroidSE/extdata"

In this directory, we find the three BAM files (and some other files):

list.files( extDataDir )

## [1] "conversion.txt" "GSE37211_series_matrix.txt"

## [3] "SRR479052.bam" "SRR479053.bam"

## [5] "SRR479054.bam"

Typically, we have a table with experimental meta data for our samples. For these three files, it is as
follows:

sampleName fileName treatment time
Ctrl 24h 1 SRR479052.bam Control 24h
Ctrl 48h 1 SRR479053.bam Control 48h
DPN 24h 1 SRR479054.bam DPN 24h

To avoid mistakes, it is helpful to store such a sample table explicitly in a text file and load it.

Exercise 1
Construct a table with the content shown above on your disk using a spread sheet application such as
Microsoft Excel and save the sheet in CSV (comma-separated values) format (or simply use a plain text
editor).

Load it with:

sampleTable <- read.csv( "/path/to/your/sampleTable.csv", header=TRUE )

This is how the sample table should look like

sampleTable

## sampleName fileName treatment time

## 1 Ctrl_24h_1 SRR479052.bam Control 24h

## 2 Ctrl_48h_1 SRR479053.bam Control 48h

## 3 DPN_24h_1 SRR479054.bam DPN 24h

Using the fileName column in the table, we construct the full paths to the files we want to perform the
counting operation on:

bamFiles <- file.path( extDataDir, sampleTable$fileName )

bamFiles

## [1] "/home/oles/R/R-3.1.0/library/parathyroidSE/extdata/SRR479052.bam"

## [2] "/home/oles/R/R-3.1.0/library/parathyroidSE/extdata/SRR479053.bam"

## [3] "/home/oles/R/R-3.1.0/library/parathyroidSE/extdata/SRR479054.bam"

http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html


CSAMA 2014: RNA-Seq differential expression workflow 5

1.4 Counting reads in genes

To count how many read map to each gene, we need transcript annotation. Download the current
GTF file with human gene annotation from Ensembl. (In case the network is too slow for that, use
the truncated version of this file, called Homo sapiens.GRCh37.75.subset.gtf.gz, which we have
placed on the course server.)

From this file, the function makeTranscriptDbFromGFF from the GenomicFeatures constructs a database
of all annotated transcripts.

library( "GenomicFeatures" )

hse <- makeTranscriptDbFromGFF( "/path/to/your/genemodel_file.GTF", format="gtf" )

exonsByGene <- exonsBy( hse, by="gene" )

## Warning: Infering Exon Rankings. If this is not what you expected, then please

be sure that you have provided a valid attribute for exonRankAttributeName

## Warning: None of the strings in your circ seqs argument match your seqnames.

In the last step, we have used the exonsBy function to bring the transcriptome data base into the shape
of a list of all genes,

exonsByGene

## GRangesList of length 100:

## $ENSG00000000003

## GRanges with 13 ranges and 2 metadata columns:

## seqnames ranges strand | exon_id exon_name

## <Rle> <IRanges> <Rle> | <integer> <character>

## [1] X [99883667, 99884983] - | 3038 <NA>

## [2] X [99885756, 99885863] - | 3039 <NA>

## [3] X [99887482, 99887565] - | 3040 <NA>

## [4] X [99887538, 99887565] - | 3041 <NA>

## [5] X [99888402, 99888536] - | 3042 <NA>

## ... ... ... ... ... ... ...

## [9] X [99890555, 99890743] - | 3046 <NA>

## [10] X [99891188, 99891686] - | 3047 <NA>

## [11] X [99891605, 99891803] - | 3048 <NA>

## [12] X [99891790, 99892101] - | 3049 <NA>

## [13] X [99894942, 99894988] - | 3050 <NA>

##

## ...

## <99 more elements>

## ---

## seqlengths:

## 7 12 2 6 16 4 3 1 17 8 19 X 11 9 20

## NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html


CSAMA 2014: RNA-Seq differential expression workflow 6

Exercise 2
Note the warnings issued by makeTranscriptDbFromGFF. Can we safely ignore them?

Exercise 3
In exonsByGene, inspect the genomic intervals given for the exons of the first gene. Note that they
are not disjunct (they overlap). How comes? Will this influence results in the following step?

After these preparations, the actual counting is easy. The function summerizeOverlap from the
GenomicAlignments package will do this.

library( "GenomicAlignments" )

se <- summarizeOverlaps( exonsByGene, BamFileList( bamFiles ), mode="Union",

singleEnd=FALSE, ignore.strand=TRUE, fragments=TRUE )

We use the counting mode "Union", which indicates that those reads which overlap any portion of
exactly one feature are counted. For more information on the different counting modes, see the help
page for summarizeOverlaps. As this experiment produced paired-end reads, we specify singleEnd =

FALSE. As protocol was not strand-specific, we specify ignore.strand = TRUE. fragments = TRUE

indicates that we also want to count reads with unmapped pairs. This last argument is only for use
with paired-end experiments.

Remember that we have only used a small subset of reads from the original experiment: for 3 samples
and for 100 genes. Nevertheless, we can still investigate the resulting SummarizedExperiment by looking
at the counts in the assay slot, the phenotypic data about the samples in colData slot (in this case
an empty DataFrame), and the data about the genes in the rowData slot. Figure 1 explains the basic
structure of the SummarizedExperiment class.

se

## class: SummarizedExperiment

## dim: 100 3

## exptData(0):

## assays(1): counts

## rownames(100): ENSG00000000003 ENSG00000000005 ... ENSG00000005469

## ENSG00000005471

## rowData metadata column names(0):

## colnames(3): SRR479052.bam SRR479053.bam SRR479054.bam

## colData names(0):

head( assay(se) )

## SRR479052.bam SRR479053.bam SRR479054.bam

## ENSG00000000003 0 0 1

## ENSG00000000005 0 0 0

## ENSG00000000419 0 0 0

## ENSG00000000457 0 1 1

## ENSG00000000460 0 0 0

## ENSG00000000938 0 0 0

http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html


CSAMA 2014: RNA-Seq differential expression workflow 7

colSums( assay(se) )

## SRR479052.bam SRR479053.bam SRR479054.bam

## 31 21 30

colData(se)

## DataFrame with 3 rows and 0 columns

rowData(se)

## GRangesList of length 100:

## $ENSG00000000003

## GRanges with 13 ranges and 2 metadata columns:

## seqnames ranges strand | exon_id exon_name

## <Rle> <IRanges> <Rle> | <integer> <character>

## [1] X [99883667, 99884983] - | 3038 <NA>

## [2] X [99885756, 99885863] - | 3039 <NA>

## [3] X [99887482, 99887565] - | 3040 <NA>

## [4] X [99887538, 99887565] - | 3041 <NA>

## [5] X [99888402, 99888536] - | 3042 <NA>

## ... ... ... ... ... ... ...

## [9] X [99890555, 99890743] - | 3046 <NA>

## [10] X [99891188, 99891686] - | 3047 <NA>

## [11] X [99891605, 99891803] - | 3048 <NA>

## [12] X [99891790, 99892101] - | 3049 <NA>

## [13] X [99894942, 99894988] - | 3050 <NA>

##

## ...

## <99 more elements>

## ---

## seqlengths:

## 7 12 2 6 16 4 3 1 17 8 19 X 11 9 20

## NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Note that the rowData slot is a GRangesList, which contains all the information about the exons for
each gene, i.e., for each row of the count table.

The colData slot, so far empty, should contain all the meta data. We hence assign our sample table
to it:

colData(se) <- DataFrame( sampleTable )

We can also use the sampleName table to name the columns of our data matrix:

colnames(se) <- sampleTable$sampleName

head( assay(se) )

## Ctrl_24h_1 Ctrl_48h_1 DPN_24h_1



CSAMA 2014: RNA-Seq differential expression workflow 8

assay(s)

e.g. 'counts'

rowData

colData

Figure 1: Diagram of SummarizedExperiment The component parts of a SummarizedExperiment
object. The assay(s) (red block) contains the matrix (or matrices) of summarized values, the rowData
(blue block) contains information about the genomic ranges, and the colData (purple block) contains
information about the samples or experiments. The highlighted line in each block represents the first
row (note that the first row of colData lines up with the first column of the assay.

## ENSG00000000003 0 0 1

## ENSG00000000005 0 0 0

## ENSG00000000419 0 0 0

## ENSG00000000457 0 1 1

## ENSG00000000460 0 0 0

## ENSG00000000938 0 0 0

This SummarizedExperiment object se is then all we need to start our analysis.

1.5 The DESeqDataSet, column metadata, and the design formula

Bioconductor software packages often have a special class of data object, which contains special slots
and requirements. The data object class in DESeq2 is the DESeqDataSet, which is built on top of the
SummarizedExperiment class. One main differences is that the assay slot is instead accessed using the
count accessor, and the values in this matrix must be non-negative integers.

A second difference is that the DESeqDataSet has an associated “design formula”. The design is
specified at the beginning of the analysis, as it will inform many of the DESeq2 functions how to treat

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 9

the samples in the analysis (one exception is the size factor estimation, i. e., the adjustment for differing
library sizes, which does not depend on the design formula). The design formula tells which variables
in the column metadata table (colData) specify the experimental design and how these factors should
be used in the analysis.

The simplest design formula for differential expression would be ∼ condition, where condition is a
column in colData(dds) which specifies which of two (or more groups) the samples belong to. For
the parathyroid experiment, we will specify ∼ patient + treatment, which means that we want to
test for the effect of treatment (the last factor), controlling for the effect of patient (the first factor).

You can use R’s formula notation to express any experimental design that can be described within an
ANOVA-like framework. Note that DESeq2 uses the same formula notation as, for instance, the lm

function of base R. If the question of interest is whether a fold change due to treatment is different
across groups, for example across patients, “interaction terms” can be included using models such as
∼ patient + treatment + patient:treatment. More complex designs such as these are covered
in the other DESeq2 vignette.

We now use R’s data command to load a prepared SummarizedExperiment that was generated from the
publicly available sequencing data files associated with the Haglund et al. paper, described on page 1.
The steps we used to produce this object were equivalent to those you worked through in Section 1.4,
except that we used the complete set of samples and all reads.

data( "parathyroidGenesSE" )

se <- parathyroidGenesSE

colnames(se) <- se$run

Supposing we have constructed a SummarizedExperiment using one of the methods described in the
previous section, we now need to make sure that the object contains all the necessary information about
the samples, i.e., a table with metadata on the count table’s columns stored in the colData slot:

colData(se)[1:5,1:4]

## DataFrame with 5 rows and 4 columns

## run experiment patient treatment

## <character> <factor> <factor> <factor>

## SRR479052 SRR479052 SRX140503 1 Control

## SRR479053 SRR479053 SRX140504 1 Control

## SRR479054 SRR479054 SRX140505 1 DPN

## SRR479055 SRR479055 SRX140506 1 DPN

## SRR479056 SRR479056 SRX140507 1 OHT

Here we see that this object already contains an informative colData slot – because we have already
prepared it for you, as described in the parathyroidSE vignette. However, when you work with your
own data, you will have to add the pertinent sample / phenotypic information for the experiment at
this stage. We highly recommend keeping this information in a comma-separated value (CSV) or tab-
separated value (TSV) file, which can be exported from an Excel spreadsheet, and the assign this to
the colData slot, as shown in the previous section.

Make sure that the order of rows in your column data table matches the order of columns in the assay

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html


CSAMA 2014: RNA-Seq differential expression workflow 10

data slot.

Exercise 4
How have we ensured this when building the se object in the previous section?

Once we have our fully annotated SummerizedExperiment object, we can construct a DESeqDataSet
object from it, which will then form the staring point of the actual DESeq2 package, described in the
following sections. Here, we use the SummerizedExperiment object we got from the parathyroidSE
package and augment it by specifying an appropriate design formula.

ddsFull <- DESeqDataSet( se, design = ~ patient + treatment )

Note that there are two alternative functions, DESeqDataSetFromMatrix and DESeqDataSetFromHTSeq,
which allow you to get started in case you have your data not in the form of a SummerizedExperiment
object, but either as a simple matrix of count values or a s output files from the htseq-count script
from the HTSeq Python package.

1.6 Collapsing technical replicates

There are a number of samples which were sequenced in multiple runs. For example, sample SRS308873
was sequenced twice. To see, we list the respective columns of the colData. (The use of as.data.frame
forces R to show us the full list, not just the beginning and the end as before.)

as.data.frame( colData( ddsFull )[ ,c("sample","patient","treatment","time") ] )

## sample patient treatment time

## SRR479052 SRS308865 1 Control 24h

## SRR479053 SRS308866 1 Control 48h

## SRR479054 SRS308867 1 DPN 24h

## SRR479055 SRS308868 1 DPN 48h

## SRR479056 SRS308869 1 OHT 24h

## SRR479057 SRS308870 1 OHT 48h

## SRR479058 SRS308871 2 Control 24h

## SRR479059 SRS308872 2 Control 48h

## SRR479060 SRS308873 2 DPN 24h

## SRR479061 SRS308873 2 DPN 24h

## SRR479062 SRS308874 2 DPN 48h

## SRR479063 SRS308875 2 OHT 24h

## SRR479064 SRS308875 2 OHT 24h

## SRR479065 SRS308876 2 OHT 48h

## SRR479066 SRS308877 3 Control 24h

## SRR479067 SRS308878 3 Control 48h

## SRR479068 SRS308879 3 DPN 24h

## SRR479069 SRS308880 3 DPN 48h

## SRR479070 SRS308881 3 OHT 24h

## SRR479071 SRS308882 3 OHT 48h

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html


CSAMA 2014: RNA-Seq differential expression workflow 11

## SRR479072 SRS308883 4 Control 48h

## SRR479073 SRS308884 4 DPN 24h

## SRR479074 SRS308885 4 DPN 48h

## SRR479075 SRS308885 4 DPN 48h

## SRR479076 SRS308886 4 OHT 24h

## SRR479077 SRS308887 4 OHT 48h

## SRR479078 SRS308887 4 OHT 48h

We recommend to first add together technical replicates (i.e., libraries derived from the same samples),
such that we have one column per sample. We have implemented a convenience function for this,
which can take am object, either SummarizedExperiment or DESeqDataSet, and a grouping factor, in
this case the sample name, and return the object with the counts summed up for each unique sample.
This will also rename the columns of the object, such that they match the unique names which were
used in the grouping factor. Optionally, we can provide a third argument, run, which can be used
to paste together the names of the runs which were collapsed to create the new object. Note that
dds$variable is equivalent to colData(dds)$variable.

ddsCollapsed <- collapseReplicates( ddsFull,

groupby = ddsFull$sample,

run = ddsFull$run )

head( as.data.frame( colData(ddsCollapsed)[ ,c("sample","runsCollapsed") ] ), 12 )

## sample runsCollapsed

## SRS308865 SRS308865 SRR479052

## SRS308866 SRS308866 SRR479053

## SRS308867 SRS308867 SRR479054

## SRS308868 SRS308868 SRR479055

## SRS308869 SRS308869 SRR479056

## SRS308870 SRS308870 SRR479057

## SRS308871 SRS308871 SRR479058

## SRS308872 SRS308872 SRR479059

## SRS308873 SRS308873 SRR479060,SRR479061

## SRS308874 SRS308874 SRR479062

## SRS308875 SRS308875 SRR479063,SRR479064

## SRS308876 SRS308876 SRR479065

We can confirm that the counts for the new object are equal to the summed up counts of the columns
that had the same value for the grouping factor:

original <- rowSums( counts(ddsFull)[ , ddsFull$sample == "SRS308873" ] )

all( original == counts(ddsCollapsed)[ ,"SRS308873" ] )

## [1] TRUE



CSAMA 2014: RNA-Seq differential expression workflow 12

2 Running the DESeq2 pipeline

Here we will analyze a subset of the samples, namely those taken after 48 hours, with either control,
DPN or OHT treatment, taking into account the multifactor design.

2.1 Preparing the data object for the analysis of interest

First we subset the relevant columns from the full dataset:

dds <- ddsCollapsed[ , ddsCollapsed$time == "48h" ]

Sometimes it is necessary to drop levels of the factors, in case that all the samples for one or more
levels of a factor in the design have been removed. If time were included in the design formula, the
following code could be used to take care of dropped levels in this column.

dds$time <- droplevels( dds$time )

It will be convenient to make sure that Control is the first level in the treatment factor, so that the
default log2 fold changes are calculated as treatment over control and not the other way around. The
function relevel achieves this:

dds$treatment <- relevel( dds$treatment, "Control" )

A quick check whether we now have the right samples:

as.data.frame( colData(dds) )

## run experiment patient treatment time submission study

## SRS308866 SRR479053 SRX140504 1 Control 48h SRA051611 SRP012167

## SRS308868 SRR479055 SRX140506 1 DPN 48h SRA051611 SRP012167

## SRS308870 SRR479057 SRX140508 1 OHT 48h SRA051611 SRP012167

## SRS308872 SRR479059 SRX140510 2 Control 48h SRA051611 SRP012167

## SRS308874 SRR479062 SRX140512 2 DPN 48h SRA051611 SRP012167

## SRS308876 SRR479065 SRX140514 2 OHT 48h SRA051611 SRP012167

## SRS308878 SRR479067 SRX140516 3 Control 48h SRA051611 SRP012167

## SRS308880 SRR479069 SRX140518 3 DPN 48h SRA051611 SRP012167

## SRS308882 SRR479071 SRX140520 3 OHT 48h SRA051611 SRP012167

## SRS308883 SRR479072 SRX140521 4 Control 48h SRA051611 SRP012167

## SRS308885 SRR479074 SRX140523 4 DPN 48h SRA051611 SRP012167

## SRS308887 SRR479077 SRX140525 4 OHT 48h SRA051611 SRP012167

## sample runsCollapsed

## SRS308866 SRS308866 SRR479053

## SRS308868 SRS308868 SRR479055

## SRS308870 SRS308870 SRR479057

## SRS308872 SRS308872 SRR479059

## SRS308874 SRS308874 SRR479062



CSAMA 2014: RNA-Seq differential expression workflow 13

## SRS308876 SRS308876 SRR479065

## SRS308878 SRS308878 SRR479067

## SRS308880 SRS308880 SRR479069

## SRS308882 SRS308882 SRR479071

## SRS308883 SRS308883 SRR479072

## SRS308885 SRS308885 SRR479074,SRR479075

## SRS308887 SRS308887 SRR479077,SRR479078

2.2 Running the pipeline

Finally, we are ready to run the differential expression pipeline. With the data object prepared, the
DESeq2 analysis can now be run with a single call to the function DESeq:

dds <- DESeq(dds)

This function will print out a message for the various steps it performs. These are described in more
detail in the manual page for DESeq, which can be accessed by typing ?DESeq. Briefly these are: the
estimation of size factors (which control for differences in the library size of the sequencing experiments),
the estimation of dispersion for each gene, and fitting a generalized linear model.

A DESeqDataSet is returned which contains all the fitted information within it, and the following section
describes how to extract out results tables of interest from this object.

2.3 Inspecting the results table

Calling results without any arguments will extract the estimated log2 fold changes and p values for
the last variable in the design formula. If there are more than 2 levels for this variable – as is the case
in this analysis – results will extract the results table for a comparison of the last level over the first
level. The following section describes how to extract other comparisons.

res <- results( dds )

res

## log2 fold change (MAP): treatment OHT vs Control

## Wald test p-value: treatment OHT vs Control

## DataFrame with 63193 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000003 613.82 -0.04480 0.0879 -0.5098 0.61017

## ENSG00000000005 0.55 -0.56833 1.0875 -0.5226 0.60127

## ENSG00000000419 304.05 0.11612 0.0962 1.2067 0.22755

## ENSG00000000457 183.52 0.00744 0.1231 0.0604 0.95182

## ENSG00000000460 207.43 0.47084 0.1449 3.2487 0.00116

## ... ... ... ... ... ...

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 14

## LRG_94 0 NA NA NA NA

## LRG_96 0 NA NA NA NA

## LRG_97 0 NA NA NA NA

## LRG_98 0 NA NA NA NA

## LRG_99 0 NA NA NA NA

## padj

## <numeric>

## ENSG00000000003 0.983

## ENSG00000000005 NA

## ENSG00000000419 NA

## ENSG00000000457 NA

## ENSG00000000460 NA

## ... ...

## LRG_94 NA

## LRG_96 NA

## LRG_97 NA

## LRG_98 NA

## LRG_99 NA

As res is a DataFrame object, it carries metadata with information on the meaning of the columns:

mcols(res, use.names=TRUE)

## DataFrame with 6 rows and 2 columns

## type description

## <character> <character>

## baseMean intermediate the base mean over all rows

## log2FoldChange results log2 fold change (MAP): treatment OHT vs Control

## lfcSE results standard error: treatment OHT vs Control

## stat results Wald statistic: treatment OHT vs Control

## pvalue results Wald test p-value: treatment OHT vs Control

## padj results BH adjusted p-values

The first column, baseMean, is a just the average of the normalized count values, dividing by size
factors, taken over all samples. The remaining four columns refer to a specific contrast, namely the
comparison of the levels DPN versus Control of the factor variable treatment. See the help page for
results (by typing ?results) for information on how to obtain other contrasts.

The column log2FoldChange is the effect size estimate. It tells us how much the gene’s expression
seems to have changed due to treatment with DPN in comparison to control. This value is reported on
a logarithmic scale to base 2: for example, a log2 fold change of 1.5 means that the gene’s expression
is increased by a multiplicative factor of 21.5 ≈ 2.82.

Of course, this estimate has an uncertainty associated with it, which is available in the column lfcSE,
the standard error estimate for the log2 fold change estimate. We can also express the uncertainty of
a particular effect size estimate as the result of a statistical test. The purpose of a test for differential
expression is to test whether the data provides sufficient evidence to conclude that this value is really



CSAMA 2014: RNA-Seq differential expression workflow 15

different from zero. DESeq2 performs for each gene a hypothesis test to see whether evidence is
sufficient to decide against the null hypothesis that there is no effect of the treatment on the gene
and that the observed difference between treatment and control was merely caused by experimental
variability (i. e., the type of variability that you can just as well expect between different samples in the
same treatment group). As usual in statistics, the result of this test is reported as a p value, and it is
found in the column pvalue. (Remember that a p value indicates the probability that a fold change as
strong as the observed one, or even stronger, would be seen under the situation described by the null
hypothesis.)

We note that a subset of the p values in res are NA (“not available”). This is DESeq’s way of reporting
that all counts for this gene were zero, and hence not test was applied. In addition, p values can be
assigned NA if the gene was excluded from analysis because it contained an extreme count outlier. For
more information, see the outlier detection section of the advanced vignette.

2.4 Other comparisons

In general, the results for a comparison of any two levels of a variable can be extracted using the
contrast argument to results. The user should specify three values: the name of the variable, the
name of the level in the numerator, and the name of the level in the denominator. Here we extract
results for the log2 of the fold change of DPN / Control.

res <- results( dds, contrast = c("treatment", "DPN", "Control") )

res

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 63193 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000003 613.82 -0.0172 0.0867 -0.1987 0.8425

## ENSG00000000005 0.55 -0.1034 1.0936 -0.0946 0.9246

## ENSG00000000419 304.05 -0.0169 0.0952 -0.1781 0.8587

## ENSG00000000457 183.52 -0.0965 0.1214 -0.7953 0.4264

## ENSG00000000460 207.43 0.3500 0.1438 2.4350 0.0149

## ... ... ... ... ... ...

## LRG_94 0 NA NA NA NA

## LRG_96 0 NA NA NA NA

## LRG_97 0 NA NA NA NA

## LRG_98 0 NA NA NA NA

## LRG_99 0 NA NA NA NA

## padj

## <numeric>

## ENSG00000000003 0.976

## ENSG00000000005 NA

## ENSG00000000419 0.980

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 16

## ENSG00000000457 0.889

## ENSG00000000460 0.273

## ... ...

## LRG_94 NA

## LRG_96 NA

## LRG_97 NA

## LRG_98 NA

## LRG_99 NA

If results for an interaction term are desired, the name argument of results should be used. Please
see the more advanced vignette for more details.

2.5 Adding gene names

Our result table only uses Ensembl gene IDs, but gene names may be more informative. Bioconductor’s
annotation packages help with mapping various ID schemes to each other.

We load the annotation package org.Hs.eg.db:

library( "org.Hs.eg.db" )

This is the organism annotation package (“org”) for Homo sapiens (“Hs”), organized as an Annota-
tionDbi package (“db”), using Entrez Gene IDs (“eg”) as primary key.

To get a list of all available key types, use

columns(org.Hs.eg.db)

## [1] "ENTREZID" "PFAM" "IPI" "PROSITE" "ACCNUM"

## [6] "ALIAS" "CHR" "CHRLOC" "CHRLOCEND" "ENZYME"

## [11] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

## [16] "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

## [21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY" "GOALL"

## [26] "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

Converting IDs with the native functions from the AnnotationDbi package is currently a bit cumbersome,
so we provide the following convenience function (without explaining how exactly it works):

convertIDs <- function( ids, fromKey, toKey, db, ifMultiple=c( "putNA", "useFirst" ) ) {
stopifnot( inherits( db, "AnnotationDb" ) )

ifMultiple <- match.arg( ifMultiple )

suppressWarnings( selRes <- AnnotationDbi::select(

db, keys=ids, keytype=fromKey, columns=c(fromKey,toKey) ) )

if( ifMultiple == "putNA" ) {
duplicatedIds <- selRes[ duplicated( selRes[,1] ), 1 ]

selRes <- selRes[ ! selRes[,1] %in% duplicatedIds, ] }
return( selRes[ match( ids, selRes[,1] ), 2 ] )



CSAMA 2014: RNA-Seq differential expression workflow 17

}

This function takes a list of IDs as first argument and their key type as the second argument. The third
argument is the key type we want to convert to, the fourth is the AnnotationDb object to use. Finally,
the last argument specifies what to do if one source ID maps to several target IDs: should the function
return an NA or simply the first of the multiple IDs?

To convert the Ensembl IDs in the rownames of res to gene symbols and add them as a new column,
we use:

res$hgnc_symbol <- convertIDs( row.names(res), "ENSEMBL", "SYMBOL", org.Hs.eg.db )

res$entrezgene <- convertIDs( row.names(res), "ENSEMBL", "ENTREZID", org.Hs.eg.db )

res

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 63193 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000003 613.82 -0.0172 0.0867 -0.1987 0.8425

## ENSG00000000005 0.55 -0.1034 1.0936 -0.0946 0.9246

## ENSG00000000419 304.05 -0.0169 0.0952 -0.1781 0.8587

## ENSG00000000457 183.52 -0.0965 0.1214 -0.7953 0.4264

## ENSG00000000460 207.43 0.3500 0.1438 2.4350 0.0149

## ... ... ... ... ... ...

## LRG_94 0 NA NA NA NA

## LRG_96 0 NA NA NA NA

## LRG_97 0 NA NA NA NA

## LRG_98 0 NA NA NA NA

## LRG_99 0 NA NA NA NA

## padj hgnc_symbol entrezgene

## <numeric> <character> <character>

## ENSG00000000003 0.976 TSPAN6 7105

## ENSG00000000005 NA TNMD 64102

## ENSG00000000419 0.980 DPM1 8813

## ENSG00000000457 0.889 SCYL3 57147

## ENSG00000000460 0.273 C1orf112 55732

## ... ... ... ...

## LRG_94 NA NA NA

## LRG_96 NA NA NA

## LRG_97 NA NA NA

## LRG_98 NA NA NA

## LRG_99 NA NA NA

Now the results have the desired external gene ids:



CSAMA 2014: RNA-Seq differential expression workflow 18

head(res,4)

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 4 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000003 613.82 -0.0172 0.0867 -0.1987 0.843

## ENSG00000000005 0.55 -0.1034 1.0936 -0.0946 0.925

## ENSG00000000419 304.05 -0.0169 0.0952 -0.1781 0.859

## ENSG00000000457 183.52 -0.0965 0.1214 -0.7953 0.426

## padj hgnc_symbol entrezgene

## <numeric> <character> <character>

## ENSG00000000003 0.976 TSPAN6 7105

## ENSG00000000005 NA TNMD 64102

## ENSG00000000419 0.980 DPM1 8813

## ENSG00000000457 0.889 SCYL3 57147

Exercise 5
Go to the Ensembl web site, select the Biomart tab, and redo our BioMart query by manually inputting
some of the Ensembl IDs and finding the HGNC names. What other data is available from this mart?
Can you modify the code chunk above to add a column chrom to the res object that tells us for each
gene which chromosome it resides on?

3 Further points

3.1 Multiple testing

Novices in high-throughput biology often assume that thresholding these p values at a low value, say
0.01, as is often done in other settings, would be appropriate – but it is not. We briefly explain why:

There are 495 genes with a p value below 0.01 among the 32082 genes, for which the test succeeded
in reporting a p value:

sum( res$pvalue < 0.01, na.rm=TRUE )

## [1] 495

table( is.na(res$pvalue) )

##

## FALSE TRUE

## 32082 31111

Now, assume for a moment that the null hypothesis is true for all genes, i.e., no gene is affected by
the treatment with DPN. Then, by the definition of p value, we expect up to 1% of the genes to



CSAMA 2014: RNA-Seq differential expression workflow 19

have a p value below 0.01. This amounts to 321 genes. If we just considered the list of genes with a
p value below 0.01 as differentially expressed, this list should therefore be expected to contain up to
321/495 = 65% false positives!

DESeq2 uses the so-called Benjamini-Hochberg (BH) adjustment; in brief, this method calculates for
each gene an adjusted p value which answers the following question: if one called significant all genes
with a p value less than or equal to this gene’s p value threshold, what would be the fraction of false
positives (the false discovery rate, FDR) among them (in the sense of the calculation outlined above)?
These values, called the BH-adjusted p values, are given in the column padj of the results object.

Hence, if we consider a fraction of 10% false positives acceptable, we can consider all genes with an
adjusted p value below 10%=0.1 as significant. How many such genes are there?

sum( res$padj < 0.1, na.rm=TRUE )

## [1] 248

We subset the results table to these genes and then sort it by the log2 fold change estimate to get the
significant genes with the strongest down-regulation

resSig <- res[ which(res$padj < 0.1 ), ]

head( resSig[ order( resSig$log2FoldChange ), ] )

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 6 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000163631 233 -0.931 0.284 -3.27 1.06e-03

## ENSG00000119946 152 -0.690 0.157 -4.41 1.04e-05

## ENSG00000041982 1377 -0.686 0.185 -3.72 2.02e-04

## ENSG00000155111 531 -0.676 0.211 -3.20 1.36e-03

## ENSG00000233705 199 -0.673 0.145 -4.65 3.32e-06

## ENSG00000091137 1144 -0.654 0.104 -6.27 3.70e-10

## padj hgnc_symbol entrezgene

## <numeric> <character> <character>

## ENSG00000163631 5.69e-02 ALB 213

## ENSG00000119946 2.42e-03 CNNM1 26507

## ENSG00000041982 1.99e-02 TNC 3371

## ENSG00000155111 6.69e-02 CDK19 23097

## ENSG00000233705 1.06e-03 SLC26A4-AS1 286002

## ENSG00000091137 8.56e-07 SLC26A4 5172

and with the strongest upregulation

tail( resSig[ order( resSig$log2FoldChange ), ] )

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 20

## DataFrame with 6 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000070669 282 0.547 0.162 3.39 7.08e-04

## ENSG00000159307 236 0.621 0.126 4.94 7.90e-07

## ENSG00000158457 282 0.629 0.162 3.88 1.06e-04

## ENSG00000103257 168 0.826 0.164 5.02 5.06e-07

## ENSG00000101255 255 0.886 0.169 5.23 1.71e-07

## ENSG00000092621 559 0.900 0.126 7.16 8.19e-13

## padj hgnc_symbol entrezgene

## <numeric> <character> <character>

## ENSG00000070669 4.68e-02 ASNS 440

## ENSG00000159307 4.57e-04 SCUBE1 80274

## ENSG00000158457 1.26e-02 TSPAN33 340348

## ENSG00000103257 3.12e-04 SLC7A5 8140

## ENSG00000101255 2.25e-04 TRIB3 57761

## ENSG00000092621 2.53e-09 PHGDH 26227

3.2 Diagnostic plots

A so-called MA plot provides a useful overview for an experiment with a two-group comparison:

plotMA( res, ylim = c(-3, 3) )

The plot (Fig. 2) represents each gene with a dot. The x axis is the average expression over all samples,
the y axis the log2 fold change between treatment and control. Genes with an adjusted p value below
a threshold (here 0.1, the default) are shown in red.

Exercise 6
Are the fold changes seen in this data set strong or weak compared to other gene expression data you
may have seen? Can you find the names of the genes with the strongest differences?

This plot demonstrates that only genes with a large average normalized count contain sufficient infor-
mation to yield a significant call.

Also note DESeq2 ’s shrinkage estimation of log fold changes (LFCs): When count values are too low to
allow an accurate estimate of the LFC, the value is “shrunken” towards zero to avoid that these values,
which otherwise would frequently be unrealistically large, dominate the top-ranked log fold changes.

Whether a gene is called significant depends not only on its LFC but also on its within-group variability,
which DESeq2 quantifies as the dispersion. For strongly expressed genes, the dispersion can be under-
stood as a squared coefficient of variation: a dispersion value of 0.01 means that the gene’s expression
tends to differ by typically

√
0.01 = 10% between samples of the same treatment group. For weak

genes, the Poisson noise is an additional source of noise, which is added to the dispersion.

The function plotDispEsts visualizes DESeq2 ’s dispersion estimates:

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 21

Figure 2: MA-plot The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2 package
incorporates a prior on log2 fold changes, resulting in moderated estimates from genes with low counts
and highly variable counts, as can be seen by the narrowing of spread of points on the left side of the
plot.

plotDispEsts( dds, ylim = c(1e-6, 1e1) )

The black points are the dispersion estimates for each gene as obtained by considering the information
from each gene separately. Unless one has many samples, these values fluctuate strongly around their
true values. Therefore, we fit the red trend line, which shows the dispersions’ dependence on the mean,
and then shrink each gene’s estimate towards the red line to obtain the final estimates (blue points) that
are then used in the hypothesis test. The blue circles above the main “cloud” of points are genes which
have high gene-wise dispersion estimates which are labelled as dispersion outliers. These estimates are
therefore not shrunk toward the fitted trend line.

Exercise 7
What can you learn from the dispersion plot about the typical within-group variability of gene-expression
in the parathyphoid data set?

Another useful diagnostic plot is the histogram of the p values (Fig. 4).

hist( res$pvalue, breaks=20, col="grey" )

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 22

Figure 3: Plot of dispersion estimates See text for details

Histogram of res$pvalue

res$pvalue

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Figure 4: Histogram of the p values returned by the test for differential expression



CSAMA 2014: RNA-Seq differential expression workflow 23

~0 ~2 ~12 ~84 ~317 ~74033

mean normalized count

ra
tio

 o
f s

m
al

l $
p$

 v
al

ue
s

0.
00

0.
02

0.
04

0.
06

Figure 5: Ratio of small p values for groups of genes binned by mean normalized count

3.3 Independent filtering

The MA plot (Figure 2) highlights an important property of RNA-Seq data. For weakly expressed genes,
we have no chance of seeing differential expression, because the low read counts suffer from so high
Poisson noise that any biological effect is drowned in the uncertainties from the read counting. We can
also show this by examining the ratio of small p values (say, less than, 0.01) for genes binned by mean
normalized count:

# create bins using the quantile function

qs <- c( 0, quantile( res$baseMean[res$baseMean > 0], 0:7/7 ) )

# "cut" the genes into the bins

bins <- cut( res$baseMean, qs )

# rename the levels of the bins using the middle point

levels(bins) <- paste0("~",round(.5*qs[-1] + .5*qs[-length(qs)]))

# calculate the ratio of £p£ values less than .01 for each bin

ratios <- tapply( res$pvalue, bins, function(p) mean( p < .01, na.rm=TRUE ) )

# plot these ratios

barplot(ratios, xlab="mean normalized count", ylab="ratio of small $p$ values")

At first sight, there may seem to be little benefit in filtering out these genes. After all, the test found
them to be non-significant anyway. However, these genes have an influence on the multiple testing
adjustment, whose performance improves if such genes are removed. By removing the weakly-expressed
genes from the input to the FDR procedure, we can find more genes to be significant among those
which we keep, and so improved the power of our test. This approach is known as independent filtering.

The DESeq2 software automatically performs independent filtering which maximizes the number of
genes which will have adjusted p value less than a critical value (by default, alpha is set to 0.1). This

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 24

● ● ●
● ●

●
●

●

●

●

●

●

●

● ●

● ●

● ●

●

0.5 0.6 0.7 0.8 0.9

14
0

18
0

22
0

quantiles of 'baseMean'

nu
m

be
r 

of
 r

ej
ec

tio
ns

Figure 6: Independent filtering. DESeq2 automatically determines a threshold, filtering on mean
normalized count, which maximizes the number of genes which will have an adjusted p value less than
a critical value.

automatic independent filtering is performed by, and can be controlled by, the results function. We
can observe how the number of rejections changes for various cutoffs based on mean normalized count.
The following optimal threshold and table of possible values is stored as an attribute of the results
object.

attr(res,"filterThreshold")

## 85.4%

## 143

plot(attr(res,"filterNumRej"),type="b",

xlab="quantiles of ’baseMean’",

ylab="number of rejections")

The term independent highlights an important caveat. Such filtering is permissible only if the filter
criterion is independent of the actual test statistic [?]. Otherwise, the filtering would invalidate the test
and consequently the assumptions of the BH procedure. This is why we filtered on the average over all
samples: this filter is blind to the assignment of samples to the treatment and control group and hence
independent.

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 25

3.4 Exporting results

Finally, we note that you can easily save the results table in a CSV file, which you can then load with
a spreadsheet program such as Excel:

res[1:2,]

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 2 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000003 613.82 -0.0172 0.0867 -0.1987 0.843

## ENSG00000000005 0.55 -0.1034 1.0936 -0.0946 0.925

## padj hgnc_symbol entrezgene

## <numeric> <character> <character>

## ENSG00000000003 0.976 TSPAN6 7105

## ENSG00000000005 NA TNMD 64102

write.csv( as.data.frame(res), file="results.csv" )

3.5 Gene-set enrichment analysis

Do the genes with a strong up- or down-regulation have something in common? We perform next a
gene-set enrichment analysis (GSEA) to examine this question.

As noted in the lecture, gene-set enrichment analysis with RNA-Seq data entails some subtleties. Briefly,
a number of different approaches have been proposed that each imply slightly different null hypotheses
that are being tested against, and their biologically interpretation differs. This is a topic of ongoing
research. We here present a relatively simplistic approach, to demonstrate the basic ideas, but note
that a more careful treatment will be needed for more definitive results.

We use the gene sets in the Reactome database

library( "reactome.db" )

This database works with Entrez IDs, so we will need the entrezgene column that we added earlier to
the res object.

First, we subset the results table, res, to only those genes for which the Reactome database has data
(i.e, whose Entrez ID we find in the respective key column of reactome.db) and for which the DESeq2
test gave an adjusted p value that was not NA.

res2 <- res[ res$entrezgene %in% keys( reactome.db, "ENTREZID" ) &

!is.na( res$padj ) , ]

head(res2)

## log2 fold change (MAP): treatment DPN vs Control



CSAMA 2014: RNA-Seq differential expression workflow 26

## Wald test p-value: treatment DPN vs Control

## DataFrame with 6 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000419 304 -0.01695 0.0952 -0.178 0.859

## ENSG00000001084 312 0.03981 0.1023 0.389 0.697

## ENSG00000001167 399 -0.05600 0.0971 -0.577 0.564

## ENSG00000001630 464 0.07000 0.0968 0.723 0.469

## ENSG00000002822 170 -0.00193 0.1378 -0.014 0.989

## ENSG00000003056 996 0.00772 0.0678 0.114 0.909

## padj hgnc_symbol entrezgene

## <numeric> <character> <character>

## ENSG00000000419 0.980 DPM1 8813

## ENSG00000001084 0.951 GCLC 2729

## ENSG00000001167 0.931 NFYA 4800

## ENSG00000001630 0.907 CYP51A1 1595

## ENSG00000002822 0.998 MAD1L1 8379

## ENSG00000003056 0.985 M6PR 4074

Using select, a function from AnnotationDbi for querying database objects, we get a table with the
mapping from Entrez IDs to Reactome Path IDs

reactomeTable <- AnnotationDbi::select( reactome.db,

keys=as.character(res2$entrezgene), keytype="ENTREZID",

columns=c("ENTREZID","REACTOMEID") )

## Warning: ’select’ and duplicate query keys resulted in 1:many mapping between

## keys and return rows

head(reactomeTable)

## ENTREZID REACTOMEID

## 1 8813 162699

## 2 8813 163125

## 3 8813 392499

## 4 8813 446193

## 5 8813 446203

## 6 8813 446219

The next code chunk transforms this table into an incidence matrix. This is a Boolean matrix with one
row for each Reactome Path and one column for each gene in res2, which tells us which genes are
members of which Reactome Paths. (If you want to understand how this chunk exactly works, read up
about the tapply function.)

incm <- do.call( rbind, with(reactomeTable, tapply(

ENTREZID, factor(REACTOMEID), function(x) res2$entrezgene %in% x ) ))

colnames(incm) <- res2$entrez



CSAMA 2014: RNA-Seq differential expression workflow 27

str(incm)

## logi [1:1454, 1:3296] FALSE FALSE FALSE FALSE FALSE FALSE ...

## - attr(*, "dimnames")=List of 2

## ..$ : chr [1:1454] "1059683" "109581" "109582" "109606" ...

## ..$ : chr [1:3296] "8813" "2729" "4800" "1595" ...

We remove all rows corresponding to Reactome Paths with less than 20 or more than 80 assigned genes.

within <- function(x, lower, upper) (x>=lower & x<=upper)

incm <- incm[ within(rowSums(incm), lower=20, upper=80), ]

To test whether the genes in a Reactome Path behave in a special way in our experiment, we calculate
a number of statistics, including a t-statistic to see whether the average of the genes’ log2 fold change
values in the gene set is different from zero. To facilitate the computations, we define a little helper
function:

testCategory <- function( reactomeID ) {
isMember <- incm[ reactomeID, ]

data.frame(

reactomeID = reactomeID,

numGenes = sum( isMember ),

avgLFC = mean( res2$log2FoldChange[isMember] ),

sdLFC = sd( res2$log2FoldChange[isMember] ),

zValue = mean( res2$log2FoldChange[isMember] ) /

sd( res2$log2FoldChange[isMember] ),

strength = sum( res2$log2FoldChange[isMember] ) / sqrt(sum(isMember)),

pvalue = t.test( res2$log2FoldChange[ isMember ] )$p.value,

reactomeName = reactomePATHID2NAME[[reactomeID]],

stringsAsFactors = FALSE ) }

The function can be called with a Reactome Path ID:

testCategory("109606")

## reactomeID numGenes avgLFC sdLFC zValue strength pvalue

## 1 109606 30 -0.0224 0.079 -0.283 -0.122 0.132

## reactomeName

## 1 Homo sapiens: Intrinsic Pathway for Apoptosis

As you can see the function not only performs the t test and returns the p value but also lists other useful
information such as the number of genes in the category, the average log fold change, a “strength”
measure (see below) and the name with which Reactome describes the Path.

We call the function for all Paths in our incidence matrix and collect the results in a data frame:

reactomeResult <- do.call( rbind, lapply( rownames(incm), testCategory ) )

As we performed many tests, we should again use a multiple testing adjustment.



CSAMA 2014: RNA-Seq differential expression workflow 28

reactomeResult$padjust <- p.adjust( reactomeResult$pvalue, "BH" )

This is a list of Reactome Paths which are significantly differentially expressed in our comparison of
DPN treatment with control, sorted according to sign and strength of the signal:

reactomeResultSignif <- reactomeResult[ reactomeResult$padjust < 0.05, ]

reactomeResultSignif[ order(reactomeResultSignif$strength), ]

## reactomeID numGenes avgLFC sdLFC zValue strength pvalue

## 377 69242 79 -0.0413 0.0982 -0.421 -0.367 3.51e-04

## 417 73894 67 -0.0442 0.1125 -0.393 -0.362 2.02e-03

## 366 68877 64 -0.0434 0.0780 -0.557 -0.347 3.50e-05

## 230 2500257 59 -0.0443 0.0752 -0.590 -0.341 3.00e-05

## 199 212165 46 -0.0502 0.0943 -0.532 -0.341 7.67e-04

## 92 167172 51 -0.0451 0.0816 -0.553 -0.322 2.46e-04

## 93 167172 51 -0.0451 0.0816 -0.553 -0.322 2.46e-04

## 312 390466 33 -0.0532 0.0756 -0.704 -0.306 3.11e-04

## 86 167161 32 -0.0523 0.0744 -0.704 -0.296 3.86e-04

## 87 167161 32 -0.0523 0.0744 -0.704 -0.296 3.86e-04

## 88 167162 32 -0.0523 0.0744 -0.704 -0.296 3.86e-04

## 89 167162 32 -0.0523 0.0744 -0.704 -0.296 3.86e-04

## 409 73776 32 -0.0523 0.0744 -0.704 -0.296 3.86e-04

## 410 73779 32 -0.0523 0.0744 -0.704 -0.296 3.86e-04

## 426 75953 32 -0.0523 0.0744 -0.704 -0.296 3.86e-04

## 429 76042 32 -0.0523 0.0744 -0.704 -0.296 3.86e-04

## 395 72086 25 -0.0591 0.0857 -0.690 -0.296 2.09e-03

## 84 167160 23 -0.0603 0.0879 -0.686 -0.289 3.34e-03

## 85 167160 23 -0.0603 0.0879 -0.686 -0.289 3.34e-03

## 435 77075 23 -0.0603 0.0879 -0.686 -0.289 3.34e-03

## 361 674695 49 -0.0397 0.0780 -0.509 -0.278 8.49e-04

## 314 391251 37 -0.0450 0.0771 -0.584 -0.274 1.09e-03

## 396 72165 37 -0.0422 0.0742 -0.568 -0.256 1.42e-03

## 347 450531 65 -0.0315 0.0763 -0.413 -0.254 1.44e-03

## 359 5250941 34 -0.0428 0.0789 -0.542 -0.249 3.37e-03

## 402 72689 64 0.0291 0.0728 0.399 0.232 2.21e-03

## 148 1799339 75 0.0408 0.0779 0.524 0.354 2.15e-05

## 58 1638091 30 0.0688 0.1074 0.640 0.377 1.50e-03

## 305 381070 41 0.0706 0.1390 0.508 0.452 2.34e-03

## 339 446203 79 0.0557 0.1137 0.490 0.495 4.02e-05

## 172 191273 21 0.1081 0.0989 1.092 0.495 6.79e-05

## reactomeName

## 377 Homo sapiens: S Phase

## 417 Homo sapiens: DNA Repair

## 366 Homo sapiens: Mitotic Prometaphase

## 230 Homo sapiens: Resolution of Sister Chromatid Cohesion

## 199 Homo sapiens: Epigenetic regulation of gene expression

## 92 Homo sapiens: Transcription of the HIV genome

## 93 Human immunodeficiency virus 1: Transcription of the HIV genome



CSAMA 2014: RNA-Seq differential expression workflow 29

## 312 Homo sapiens: Chaperonin-mediated protein folding

## 86 Homo sapiens: HIV Transcription Initiation

## 87 Human immunodeficiency virus 1: HIV Transcription Initiation

## 88 Homo sapiens: RNA Polymerase II HIV Promoter Escape

## 89 Human immunodeficiency virus 1: RNA Polymerase II HIV Promoter Escape

## 409 Homo sapiens: RNA Polymerase II Promoter Escape

## 410 Homo sapiens: RNA Polymerase II Transcription Pre-Initiation And Promoter Opening

## 426 Homo sapiens: RNA Polymerase II Transcription Initiation

## 429 Homo sapiens: RNA Polymerase II Transcription Initiation And Promoter Clearance

## 395 Homo sapiens: mRNA Capping

## 84 Homo sapiens: RNA Pol II CTD phosphorylation and interaction with CE

## 85 Human immunodeficiency virus 1: RNA Pol II CTD phosphorylation and interaction with CE

## 435 Homo sapiens: RNA Pol II CTD phosphorylation and interaction with CE

## 361 Homo sapiens: RNA Polymerase II Pre-transcription Events

## 314 Homo sapiens: Protein folding

## 396 Homo sapiens: mRNA Splicing - Minor Pathway

## 347 Homo sapiens: Regulation of mRNA stability by proteins that bind AU-rich elements

## 359 Homo sapiens: Negative epigenetic regulation of rRNA expression

## 402 Homo sapiens: Formation of a pool of free 40S subunits

## 148 Homo sapiens: SRP-dependent cotranslational protein targeting to membrane

## 58 Homo sapiens: Heparan sulfate/heparin (HS-GAG) metabolism

## 305 Homo sapiens: IRE1alpha activates chaperones

## 339 Homo sapiens: Asparagine N-linked glycosylation

## 172 Homo sapiens: Cholesterol biosynthesis

## padjust

## 377 0.01039

## 417 0.03823

## 366 0.00460

## 230 0.00460

## 199 0.01952

## 92 0.01039

## 93 0.01039

## 312 0.01039

## 86 0.01039

## 87 0.01039

## 88 0.01039

## 89 0.01039

## 409 0.01039

## 410 0.01039

## 426 0.01039

## 429 0.01039

## 395 0.03823

## 84 0.04983

## 85 0.04983

## 435 0.04983

## 361 0.02047

## 314 0.02500



CSAMA 2014: RNA-Seq differential expression workflow 30

## 396 0.02984

## 347 0.02984

## 359 0.04983

## 402 0.03898

## 148 0.00460

## 58 0.02984

## 305 0.03971

## 339 0.00460

## 172 0.00622

However, as discussed in the lecture, it is highly questionable that a t test is appropriate here. After all,
genes in a set are typically correlated, and this violates the assumption of independence that is at the
core of a t test. Hence, should we really look at p values from t tests? A p value obtained by sample
permutation would solve this issue as sample permutation preserves and so accounts for gene-gene
correlation. However, with only four subjects, we do not have enough samples for this.

Hence, it may be more prudent to disregard these questionable p values altogether and instead look at a
more primitive statistic, such as simply the average LFC within a path, perhaps divided by the standard
deviation. We have stored this above as zValue.

head( reactomeResult[ order(reactomeResult$zValue), ] )

## reactomeID numGenes avgLFC sdLFC zValue strength pvalue

## 312 390466 33 -0.0532 0.0756 -0.704 -0.306 0.000311

## 86 167161 32 -0.0523 0.0744 -0.704 -0.296 0.000386

## 87 167161 32 -0.0523 0.0744 -0.704 -0.296 0.000386

## 88 167162 32 -0.0523 0.0744 -0.704 -0.296 0.000386

## 89 167162 32 -0.0523 0.0744 -0.704 -0.296 0.000386

## 409 73776 32 -0.0523 0.0744 -0.704 -0.296 0.000386

## reactomeName

## 312 Homo sapiens: Chaperonin-mediated protein folding

## 86 Homo sapiens: HIV Transcription Initiation

## 87 Human immunodeficiency virus 1: HIV Transcription Initiation

## 88 Homo sapiens: RNA Polymerase II HIV Promoter Escape

## 89 Human immunodeficiency virus 1: RNA Polymerase II HIV Promoter Escape

## 409 Homo sapiens: RNA Polymerase II Promoter Escape

## padjust

## 312 0.0104

## 86 0.0104

## 87 0.0104

## 88 0.0104

## 89 0.0104

## 409 0.0104

head( reactomeResult[ order(reactomeResult$zValue, decreasing=TRUE), ] )

## reactomeID numGenes avgLFC sdLFC zValue strength pvalue

## 172 191273 21 0.1081 0.0989 1.092 0.495 6.79e-05

## 58 1638091 30 0.0688 0.1074 0.640 0.377 1.50e-03



CSAMA 2014: RNA-Seq differential expression workflow 31

## 226 2426168 26 0.0629 0.1163 0.541 0.321 1.07e-02

## 148 1799339 75 0.0408 0.0779 0.524 0.354 2.15e-05

## 305 381070 41 0.0706 0.1390 0.508 0.452 2.34e-03

## 44 156580 31 0.0537 0.1084 0.496 0.299 9.78e-03

## reactomeName

## 172 Homo sapiens: Cholesterol biosynthesis

## 58 Homo sapiens: Heparan sulfate/heparin (HS-GAG) metabolism

## 226 Homo sapiens: Activation of gene expression by SREBF (SREBP)

## 148 Homo sapiens: SRP-dependent cotranslational protein targeting to membrane

## 305 Homo sapiens: IRE1alpha activates chaperones

## 44 Homo sapiens: Phase II conjugation

## padjust

## 172 0.00622

## 58 0.02984

## 226 0.08232

## 148 0.00460

## 305 0.03971

## 44 0.08142

If such an analysis is only considered exploratory, we may inspect various such tables and see whether the
ranking of Paths helps us make sense of the data. Nevertheless, there is certainly room for improvement
here.

Exercise 8
The first few hits in the ranking by z value all have exactly the same values. Why?

4 Working with rlog-transformed data

4.1 The rlog transform

Many common statistical methods for exploratory analysis of multidimensional data, especially methods
for clustering and ordination (e. g., principal-component analysis and the like), work best for (at least
approximately) homoskedastic data; this means that the variance of an observable quantity (i.e., here,
the expression strength of a gene) does not depend on the mean. In RNA-Seq data, however, variance
grows with the mean. For example, if one performs PCA directly on a matrix of normalized read counts,
the result typically depends only on the few most strongly expressed genes because they show the largest
absolute differences between samples. A simple and often used strategy to avoid this is to take the
logarithm of the normalized count values plus a small pseudocount; however, now the genes with low
counts tend to dominate the results because, due to the strong Poisson noise inherent to small count
values, they show the strongest relative differences between samples.

As a solution, DESeq2 offers the regularized-logarithm transformation, or rlog for short. For genes
with high counts, the rlog transformation differs not much from an ordinary log2 transformation. For
genes with lower counts, however, the values are shrunken towards the genes’ averages across all

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 32

samples. Using an empirical Bayesian prior in the form of a ridge penality, this is done such that the
rlog-transformed data are approximately homoskedastic.

Note that the rlog transformation is provided for applications other than differential testing. For dif-
ferential testing we recommend the DESeq function applied to raw counts, as described earlier in this
vignette, which also takes into account the dependence of the variance of counts on the mean value
during the dispersion estimation step.

The function rlog returns a SummarizedExperiment object which contains the rlog-transformed values
in its assay slot:

rld <- rlog( dds )

head( assay(rld) )

## SRS308866 SRS308868 SRS308870 SRS308872 SRS308874 SRS308876

## ENSG00000000003 9.761 9.728 9.865 9.093 9.16 9.06

## ENSG00000000005 -0.981 -0.741 -0.945 -0.924 -1.11 -1.11

## ENSG00000000419 8.065 8.077 8.119 8.231 8.29 8.37

## ENSG00000000457 7.417 7.250 7.311 7.854 7.73 7.89

## ENSG00000000460 7.576 7.691 7.721 8.057 8.26 8.06

## ENSG00000000938 3.131 2.936 2.954 4.216 3.64 3.65

## SRS308878 SRS308880 SRS308882 SRS308883 SRS308885 SRS308887

## ENSG00000000003 8.89 8.79 8.84 9.05 9.07 8.88

## ENSG00000000005 -1.11 -1.12 -1.11 -1.11 -1.12 -1.12

## ENSG00000000419 8.31 8.31 8.41 8.26 8.15 8.32

## ENSG00000000457 7.16 7.30 7.38 7.60 7.48 7.50

## ENSG00000000460 7.06 7.44 7.63 6.91 7.34 7.66

## ENSG00000000938 2.80 3.33 3.23 3.29 3.45 3.23

To show the effect of the transformation, we plot the first sample against the second, first simply using
the log2 function (after adding 1, to avoid taking the log of zero), and then using the rlog-transformed
values.

par( mfrow = c( 1, 2 ) )

plot( log2( 1+counts(dds, normalized=TRUE)[, 1:2] ), col="#00000020", pch=20, cex=0.3 )

plot( assay(rld)[, 1:2], col="#00000020", pch=20, cex=0.3 )

Note that, in order to make it easier to see where several points are plotted on top of each other, we
set the plotting color to a semi-transparent black (encoded as #00000020) and changed the points to
solid disks (pch=20) with reduced size (cex=0.3)5.

In Figure 7, we can see how genes with low counts seem to be excessively variable on the ordinary
logarithmic scale, while the rlog transform compresses differences for genes for which the data cannot
provide good information anyway.

5The function heatscatter from the package LSD offers a colorful alternative.

http://cran.fhcrc.org/web/packages/LSD/index.html


CSAMA 2014: RNA-Seq differential expression workflow 33

Figure 7: Scatter plot of sample 2 vs sample 1. Left: using an ordinary log2 transformation.
Right: Using the rlog transformation.

4.2 Sample distances

A useful first step in an RNA-Seq analysis is often to assess overall similarity between samples: Which
samples are similar to each other, which are different? Does this fit to the expectation from the
experiment’s design?

We use the R function dist to calculate the Euclidean distance between samples. To avoid that the
distance measure is dominated by a few highly variable genes, and have a roughly equal contribution
from all genes, we use it on the rlog-transformed data:

sampleDists <- dist( t( assay(rld) ) )

sampleDists

## SRS308866 SRS308868 SRS308870 SRS308872 SRS308874 SRS308876 SRS308878

## SRS308868 32.9

## SRS308870 31.2 33.7

## SRS308872 83.8 86.6 85.6

## SRS308874 83.8 85.2 84.9 33.3

## SRS308876 82.8 85.6 84.6 32.0 33.0

## SRS308878 108.6 111.7 110.3 109.1 111.7 108.5

## SRS308880 108.7 111.1 110.1 110.5 112.3 110.1 31.7

## SRS308882 108.7 111.1 110.0 111.3 113.0 110.6 36.1

## SRS308883 95.1 98.4 97.5 91.6 93.9 90.5 81.6

## SRS308885 92.9 95.2 95.0 90.0 91.2 89.4 83.5

## SRS308887 95.9 98.7 98.0 95.0 96.6 93.7 82.9

## SRS308880 SRS308882 SRS308883 SRS308885



CSAMA 2014: RNA-Seq differential expression workflow 34

10 11 12 7 8 9 5 6 4 2 1 3

Control−4
DPN−4
OHT−4
Control−3
DPN−3
OHT−3
DPN−2
OHT−2
Control−2
DPN−1
Control−1
OHT−1

0 80

Value

0

Color Key
and Histogram

C
ou

nt

Figure 8: Heatmap of Euclidean sample distances after rlog transformation.

## SRS308868

## SRS308870

## SRS308872

## SRS308874

## SRS308876

## SRS308878

## SRS308880

## SRS308882 29.4

## SRS308883 82.1 83.0

## SRS308885 82.3 83.5 32.7

## SRS308887 81.4 81.4 34.9 31.2

Note the use of the function t to transpose the data matrix. We need this because dist calculates
distances between data rows and our samples constitute the columns.

We visualize the distances in a heatmap, using the function heatmap.2 from the gplots package.

sampleDistMatrix <- as.matrix( sampleDists )

rownames(sampleDistMatrix) <- paste( rld$treatment,

rld$patient, sep="-" )

colnames(sampleDistMatrix) <- NULL

library( "gplots" )

library( "RColorBrewer" )

http://cran.fhcrc.org/web/packages/gplots/index.html


CSAMA 2014: RNA-Seq differential expression workflow 35

1 : Control
1 : DPN
1 : OHT
2 : Control
2 : DPN
2 : OHT
3 : Control
3 : DPN
3 : OHT
4 : Control
4 : DPN
4 : OHT

PC1

P
C

2

−20

−10

0

10

20

−20 0 20 40

●●●

●●●

●●●

●●●

Figure 9: Principal components analysis (PCA) of samples after rlog transformation.

colours = colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)

heatmap.2( sampleDistMatrix, trace="none", col=colours)

Note that we have changed the row names of the distance matrix to contain treatment type and patient
number instead of sample ID, so that we have all this information in view when looking at the heatmap
(Fig. 8).

Another way to visualize sample-to-sample distances is a principal-components analysis (PCA). In this
ordination method, the data points (i.e., here, the samples) are projected onto the 2D plane such that
they spread out optimally (Fig. 9).



CSAMA 2014: RNA-Seq differential expression workflow 36

S
R

S
30

88
74

S
R

S
30

88
76

S
R

S
30

88
72

S
R

S
30

88
68

S
R

S
30

88
66

S
R

S
30

88
70

S
R

S
30

88
87

S
R

S
30

88
85

S
R

S
30

88
83

S
R

S
30

88
78

S
R

S
30

88
80

S
R

S
30

88
82

ENSG00000154975

ENSG00000196090

ENSG00000104112

ENSG00000145920

ENSG00000105409

ENSG00000138944

ENSG00000154654

ENSG00000185565

ENSG00000197106

ENSG00000102290

ENSG00000056291

ENSG00000180828

ENSG00000163492

ENSG00000138083

ENSG00000106809

ENSG00000158955

ENSG00000119125

ENSG00000197635

ENSG00000147003

ENSG00000166343

ENSG00000126803

ENSG00000188404

ENSG00000196104

ENSG00000095303

ENSG00000171617

ENSG00000164128

ENSG00000111962

ENSG00000130477

ENSG00000089199

ENSG00000157064

ENSG00000151892

ENSG00000112175

ENSG00000100867

ENSG00000132639

ENSG00000103888

−1 0 1

Row Z−Score

0
2

4
6

8
10

Color Key
and Histogram

C
ou

nt

Figure 10: Heatmap with gene clustering.

plotPCA( rld, intgroup = c( "patient", "treatment" ) )

Here, we have used the function plotPCA which comes with DESeq2 . The two terms specified as
intgroup are column names from our sample data; they tell the function to use them to choose
colours.

From both visualizations, we see that the differences between patients is much larger than the difference
between treatment and control samples of the same patient. This shows why it was important to account
for this paired design (“paired”, because each treated sample is paired with one control sample from the
same patient). We did so by using the design formula ∼ patient + treatment when setting up the
data object in the beginning. Had we used an un-paired analysis, by specifying only ∼ treatment, we
would not have found many hits, because then, the patient-to-patient differences would have drowned
out any treatment effects.

Here, we have performed this sample distance analysis towards the end of our analysis. In practice,
however, this is a step suitable to give a first overview on the data. Hence, one will typically carry
out this analysis as one of the first steps in an analysis. To this end, you may also find the function
arrayQualityMetrics, from the package of the same name, useful.

4.3 Gene clustering

In the heatmap of Fig. 8, the dendrogram at the side shows us a hierarchical clustering of the samples.
Such a clustering can also be performed for the genes.

Since the clustering is only relevant for genes that actually carry signal, one usually carries it out only

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


CSAMA 2014: RNA-Seq differential expression workflow 37

for a subset of most highly variable genes. Here, for demonstration, let us select the 35 genes with the
highest variance across samples:

library( "genefilter" )

topVarGenes <- head( order( rowVars( assay(rld) ), decreasing=TRUE ), 35 )

The heatmap becomes more interesting if we do not look at absolute expression strength but rather at
the amount by which each gene deviates in a specific sample from the gene’s average across all samples.
Hence, we center and scale each genes’ values across samples, and plot a heatmap.

heatmap.2( assay(rld)[ topVarGenes, ], scale="row",

trace="none", dendrogram="column",

col = colorRampPalette( rev(brewer.pal(9, "RdBu")) )(255),

ColSideColors = c( Control="gray", DPN="darkgreen", OHT="lightblue" )[

colData(rld)$treatment ] )

Exercise 9
Which of the options to heatmap.2 cause the centering and scaling of the genes? How does the
heatmap change if you do not scale it?

We can now see (Fig. 10) blocks of genes which covary across patients. Often, such a heatmap is
insightful, even though here, seeing these variations across patients is of limited value because we are
rather interested in the effects between the treatments from each patient.

Exercise 10
Still, this heatmap shows genes that vary strongest between patients. In our differential-expression
analysis, we found a list of genes that varied significantly between treatment and control. Display these
genes (or maybe only those showing up-regulation upon treatment) in a similar heatmap. Can you
confirm the test result from visual inspection of the heatmap?

5 Session Info

As last part of this document, we call the function sessionInfo, which reports the version numbers
of R and all the packages used in this session. It is good practice to always keep such a record as it will
help to trace down what has happened in case that an R script ceases to work because a package has
been changed in a newer version. The session information should also always be included in any emails
to the Bioconductor mailing list.

• R version 3.1.0 (2014-04-10), x86_64-unknown-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils
• Other packages: AnnotationDbi 1.26.0, Biobase 2.24.0, BiocGenerics 0.10.0, Biostrings 2.32.0,

BSgenome 1.32.0, DBI 0.2-7, DESeq2 1.4.5, genefilter 1.46.1, GenomeInfoDb 1.0.2,



CSAMA 2014: RNA-Seq differential expression workflow 38

GenomicAlignments 1.0.1, GenomicFeatures 1.16.2, GenomicRanges 1.16.3, gplots 2.14.0,
IRanges 1.22.9, knitr 1.6, org.Hs.eg.db 2.14.0, parathyroidSE 1.2.0, RColorBrewer 1.0-5,
Rcpp 0.11.2, RcppArmadillo 0.4.300.8.0, reactome.db 1.48.0, Rsamtools 1.16.1,
RSQLite 0.11.4, XVector 0.4.0
• Loaded via a namespace (and not attached): annotate 1.42.0, BatchJobs 1.2, BBmisc 1.7,

BiocParallel 0.6.1, BiocStyle 1.2.0, biomaRt 2.20.0, bitops 1.0-6, brew 1.0-6, caTools 1.17,
checkmate 1.1, codetools 0.2-8, digest 0.6.4, evaluate 0.5.5, fail 1.2, foreach 1.4.2,
formatR 0.10, gdata 2.13.3, geneplotter 1.42.0, grid 3.1.0, gtools 3.4.1, highr 0.3,
iterators 1.0.7, KernSmooth 2.23-12, lattice 0.20-29, locfit 1.5-9.1, plyr 1.8.1, RCurl 1.95-4.1,
rtracklayer 1.24.2, sendmailR 1.1-2, splines 3.1.0, stats4 3.1.0, stringr 0.6.2, survival 2.37-7,
tools 3.1.0, XML 3.98-1.1, xtable 1.7-3, zlibbioc 1.10.0


	1 Input data
	1.1 Preparing count matrices
	1.2 Aligning reads to a reference
	1.3 Example BAM files
	1.4 Counting reads in genes
	1.5 The DESeqDataSet, column metadata, and the design formula
	1.6 Collapsing technical replicates

	2 Running the DESeq2 pipeline
	2.1 Preparing the data object for the analysis of interest
	2.2 Running the pipeline
	2.3 Inspecting the results table
	2.4 Other comparisons
	2.5 Adding gene names

	3 Further points
	3.1 Multiple testing
	3.2 Diagnostic plots
	3.3 Independent filtering
	3.4 Exporting results
	3.5 Gene-set enrichment analysis

	4 Working with rlog-transformed data
	4.1 The rlog transform
	4.2 Sample distances
	4.3 Gene clustering

	5 Session Info

