
Usability of the Bioconductor Infrastructure

Michael Lawrence

July 28, 2017

Outline

Motivation

Usability

Solutions

The Ranges infrastructure is an incubator

Method
Prototyping

Data
Analysis

Insight incubation

Platform
Integration

I Should be accessible to the average Bioconductor user

Is the transition happening?

I From a typical package submission:
Imports: checkmate, dplyr, ggplot2, tidyr

I A typical initial response:

Why not?

I Education?
I Documentation?
I The software?

I It all starts here

Aspects of software quality: the ilities

Aspects of software quality: the ilities

Cognitive Dimensions of Notations

I Thomas Green and Marian Petre (1996) proposed 14
dimensions of usability in the context of visual programming

I Many are interrelated and in balance with each other
I Guide for evaluating usability and as a framework for

discussing interface design trade-offs

Green’s cognitive dimensions

I Abstraction gradient
I Closeness of mapping
I Consistency
I Diffuseness
I Error-proneness
I Hard mental operations
I Hidden dependencies

I Provisionality
I Premature commitment
I Progressive evaluation
I Role-expressiveness
I Secondary notation
I Viscosity (robustness)
I Visibility

Abstraction

Procedural abstraction
A compound operation that enables the user tell the computer
what to do without telling it how to do it.

Data abstraction
"A methodology that enables us to isolate how a
compound data object is used from the details of how it is
constructed from more primitive data objects"

Structure and Interpretation of Computer Programs (1979)

I We can implement data abstractions using a set of procedures
(constructors and selectors) that satisfy some contract.

Abstraction gradient
Stratified design

"The notion that a complex system should be structured
as a sequence of levels that are described using a
sequence of languages"

I Structure and Interpretation of Computer Programs (1979)

Rle: Run-Length Encoded vector

Subverting abstractions

Example: finding peak summits

Find maximum of tallest peak

max_pos <- which.max(cov_rle)

Find the summit range of the peak

max_run <- findRun(cov_rle, max_pos)
summit <- ranges(cov_rle)[max_run]

The GRanges gradient

The GRanges gradient

Closeness of mapping

Relates to the mapping from the user’s mental model of the data
and processes to their computational representations.

I For genomic data, the user is thinking in biological terms, so
our data structures should embed biological semantics

GRanges is out of alignment with the user

Tightening the cognitive link is the job of the user

I Explicitly declaring semantics:
I Helps the software do the right thing
I Helps the user be more expressive

I Developers should provide the necessary tools

Tightening the cognitive link is the job of the user

I Explicitly declaring semantics:
I Helps the software do the right thing
I Helps the user be more expressive

I Developers should provide the necessary tools

Consistency

Refers to consistency of the mappings between the mental and
computational models.

I Bioconductor is:
I Internally consistent
I Consistent with base R
I Inconsistent with fluent, tidyverse-style APIs

Diffuseness (vs expressiveness)

I Relates to the information density of the code and how well it
communicates the intent of the programmer

I Enable the user to convey more meaning with less code
I Terseness for its own sake makes code obscure, difficult to

unpack
I For genomic data, we want the user to express computations

in terms of the biology

findOverlaps() API

Joining by overlaps is currently a diffuse operation:
hits <- findOverlaps(query, subject)
query$variable <- extractList(subject$variable,

as(hits, "List"))
joined <- expand(query, "variable")

Why not abstract that to something like:
joined <- overlap_join(query, subject, "variable")

import() API

Importing a file with rtracklayer is overly terse and abstract:
obj <- import(file) # what sort of data is this?

A bit better:
obj <- import.bed(file)

"Expert programmers know how to choose the level of
abstraction appropriate to their task".

Hard mental operations

How hard the user has to think about things other than the
motivating task

Classic example
Optimizing using R vector operations when an algorithm is more
intuitively expressed with loops

AtomicLists for data aggregation

I IRanges defines List subclasses specific to atomic vector types
I IntegerList, CharacterList, etc

I Useful for modeling ragged data
I Implement summary functions for aggregating their elements.

I sum(), mean(), etc

Example: comparing overlapping regions

Compute the total difference between the endpoints of overlapping
pairs of ranges and find the closest for each query range.

hits <- as(findOverlaps(x, y), "List")
yl <- extractList(y, hits)
dev <- abs(start(x) - start(yl)) + abs(end(x) - end(yl))
unlist(yl[phead(order(dev), 1L)])

Visibility (discoverability)

The ability of a user to find:
I Procedures, and what they do,
I Data structures, and what operations they support.

S4 benefits developers
I Automatically validates object integrity upon

modification/construction
I Implements polymorphism through dispatch (data-directed

programming) and inheritance
I These benefits trickle-down to users, but indirect

Users are (becoming) developers

Method
Prototyping

Data
Analysis

Insight incubation

Platform
Integration

S3/S4 dispatch challenges users

I Users want visibility into:
I What happens when calling a function on a specific type of

object
I Bridge: selectMethod(generic, sig) vs. generic.sig

I Which operations are possible on a specific type of object
I Bridge: methods(class)

I Bridges are available, but still a layer of indirection

S4 challenges developers, and thus users

Challenges

I Debugging:
I Dispatch layers obscure stack traces
I Selecting a method to debug is complex

I debug(generic, sig = "Foo") still harder than
debug(generic.Foo)

I Poor reliablity due to some implementation choices
I JMC says it is time to rewrite

I Syntax for defining classes, generics and methods rubs people
the wrong way

Impact
Lack of developer adoption leads to lack of emphasis on or even
discouragement against S4 in R education

Challenges are more acute for Bioconductor users

I Heavy reliance on S4 features
I Multiple dispatch
I Complex class hierarchies

I Multiple abstractions at different semantic levels
I Tidyverse has a single abstraction, just with multiple

representations, mostly transparent to the user

Expose generics judiciously

I In principle, only accessors need to be generic
I Additional methods only needed if:

I Data structures have different constraints relating accessor
behavior

I ncol(x) == length(x) for data.frame but not matrix
I A method is making assumptions about how the accessors

(and the data structure) are implemented (optimization)

I Those situations should be avoided
I And fixed through better abstractions

I E.g., NROWS(), extractROWS() unify data.frame, matrix and
vectors

Expose classes judiciously

I Abstract away classes that are only instantiated as
intermediates

I Hide Hits with high-level joins
I Hide RleList with high-level coverage operation

I Still want biologically meaningful data structures
I In most cases, user only needs GRanges(List) and

SummarizedExperiment

Fluent, endomorphic APIs for Bioconductor objects

I The fluent and endomorphic APIs of the tidyverse adhere to
good UI practices and empirically proven to be useful

I Provide alternatives to "gets" (accessor<-()) syntax and
maybe accessors altogether

I This syntax:
mcols(x)$foo <- bar

I Would gain a more functional alternative:
mutate_mcols(x, foo=bar)

I Reservations: non-standard evaluation

A "tidy" API for Bioconductor objects

I Genomic data fits neatly into a table
I Could map tidy API onto Bioconductor data structures
I Endomorphic constraints would only apply at the "table" level

I Stripping range information would drop to a tibble
I Mixed metaphor problem:

I Tidy APIs are table-oriented
I Bioconductor objects are rarely tabular
I Even when we can wrap Bioc objects in tabular APIs, the

interface will present a mash up of models

The "Query" project

I Tidy-mapping for Bioconductor objects with deferred
evaluation

I Research project with Stuart Lee @ Monash w/ Di Cook
I Will be the backend for ggbio2
I Constructs an optimized execution plan

I Pushes down operations like restriction

Example: compute coverage and find islands

Bioconductor API

gr_a <- import("exons.bed")
cov <- coverage(gr_a)
ans <- GRanges(cov)
subset(ans, score > 0)

New Query API

BEDFileQuery("exons.bed") %>% import() %>%
compute_coverage() %>% filter(score > 0)

I compute_coverage() skips the intermediate RleList
I Calling subsetByOverlaps() would only compute coverage for

the specified regions

	Motivation
	Usability
	Solutions

