Detection and inference of differentially methylated regions from bisulfite sequencing

Keegan Korthauer

Bioconductor Meeting 2017

Differential methylation

Differential methylation commonly studied in

- Cancer
- Developmental stages / Aging
- Tissue types

Differentially Methylated Region (DMR)

Whole Genome Bisulfite Sequencing

Treat DNA with bisulfite before sequencing

- Methylated C -> unaffected
- Unmethylated C -> appear as T

Whole Genome Bisulfite Sequencing

Treat DNA with bisulfite before sequencing

- Methylated C -> unaffected
- Unmethylated C -> appear as T

Methods for DMR detection

Challenges

- Have to handle small sample sizes !
- Accommodate known sources of variability
- Detect region boundaries

Two main strategies

- Detect significant CpGs, then group together neighbors to form regions (DSS, BSmooth)
- Targeted regions / sliding windows specified in advance (BiSeq, MOABS)

Danger of grouping significant CpGs

Genomic location

Danger of grouping significant CpGs

Genomic location

Danger of grouping significant CpGs

Genomic location

DMRs come in all shapes and sizes

-> Detect region boundaries from the data

Our approach: dmrseq

1. Detect regions by scanning the genome for candidate regions

2. Region-level summary scores compared to a null to evaluate significance

Our approach: dmrseq

1. Detect regions by scanning the genome for candidate regions

2. Region-level summary scores compared to a null to evaluate significance

Our approach: dmrseq

1. Detect regions by scanning the genome for candidate regions

2. Region-level summary scores compared to a null to evaluate significance

Region level Summary Scores

Summary statistic that is approximately exchangeable across the genome so we can generate a **pooled null**

- Biological variability among samples
- Correlation among nearby CpGs

 Higher variability in CpGs with lower coverage Generalized Least Squares (GLS) regression

$$\arcsin(2\pi_{ijr} - 1) = \sum_{l} \alpha_{lr} \mathbf{1}_{[i=1]} + \beta_r X_j + \varepsilon_{ijr}$$

 Nested autoregressive correlated error structure

 Coverage-weighted variance

dmrseq accurately controls FDR

dmrseq has high sensitivity

(A) Roadmap Tissue Comparisons

dmrseq Summary

- dmrseq identifies and prioritizes DMRs from bisulfite sequencing experiments
- Computes region summary statistics that account for known sources of variability across the genome
- Achieves accurate False Discovery Rate control by generating a null distribution that pools information across the genome

Learn More

Slides goo.gl/MwQz5f

dmrseq available on GitHub

https://github.com/kdkorthauer/dmrseq

Contact

keegan@jimmy.harvard.edu

Acknowledgements

Rafa Lab Rafael Irizarry Chinmay Shukla

Collaborators

Sutirtha Chakraborty Yuval Benjamini