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Using R and Bioconductor to explore genetic 
effects on single-cell gene expression



1. (How) Can we carry out single-cell QTL studies?

2. How will we scale Bioconductor single-cell tools to 
datasets of millions of cells?



Single-cell QTL studies



Combining individual-to-individual and cell-to-cell 
heterogeneity

Single-cell
QTL mapping



Recap: QTL in population variation datasets

Linear mixed model: 
Y = covars + SNP + g + e

g ~ N(0, K𝜎g); e ~ N(0, I 𝜎e)

1Mb



Motivating example (I): in induced pluripotent stem cells 
we can link disease risk variants to gene expression

Kilpinen, Goncalves et al, Nature, 2017

TERT has an iPS eQTL that overlaps a cancer risk variant.



Motivating example (II): genetic effects on gene 
expression (can) depend on context

Fairfax et al, Science, 2014: Fig. 3



scRNA-seq as a readout for QTL analyses offers new 
phenotypes to study with unprecedented characterisation
of cell types and states



Brief	overview	– definitive	endoderm	
differentiation

Adapted	from	Touboul et	al,	2010	Hepatology
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Definitive endoderm differentiation from iPSCs

Mariya Chhatriwala, Shradha Amatya, Jose Garcia-Bernardo, Ludovic Vallier



• How do we characterise the heterogeneity of 
transcriptome states in iPSCs during differentiation?

• How do genetic variants influence single-cell states?

• How do genetic effects differ in differentiated cells?

• (How) Can we map QTLs for single-cell phenotypes?



• How can we design a single-cell QTL study that:
1. Can feasibly assay cells from a large enough number of 

individuals?
2. Is robust to batch effects?



Donor pooling can increase throughput and ameliorate 
batch effects

Li et al, EMBO Rep., 2016

Grown together 
in mixed 
population

scRNA-seq data for 100s cells per donor

4-6 lines

Shradha Amatya, Mariya Chhatriwala, Jose Garcia-Bernardo, Ludovic Vallier



Computational challenge: Donor ID

At the point of sequencing, we do not know which 
individual a cell came from.
So can we:
• Identify the donor for each cell?

• When the donor genotypes are known?
• When the donor genotypes are unknown?



Approach when donor genotypes are known

• Variants called with GATK HaplotypeCaller from scRNA-seq reads

• Matched against genotypes for 400 HipSci donors by estimating “genomic 
relatedness” (average allelic correlation) between cell and line

• Use highest relatedness score to identify line from which cell came



Approach when donor genotypes are known

• De novo variant calling from RNA-seq reads?
• Too variable; not enough overlap with genotyped sites; bias to variant allele

• Call variants at known sites (e.g. dbSNP variants)?
• Too slow; too many uninformative sites

• Call variants at known sites in the 1000 highest expressed genes in bulk 
iPSC samples?

• Right balance between informative sites, speed and accuracy😸



Variants called from Smartseq2 fibroblast data

Fibroblast cells from 3 individual donors



Score distributions for Smartseq2 data

Fibroblast cells from 3 individual donors



Score distributions for Smartseq2 data

Fibroblast cells from 3 individual donors



There are large-scale differences in gene expression 
between donors

Fibroblast cells from 3 individual donors



Donor ID also works for sparser 10x data

Fibroblast cells from 3 individual donors



Approach when donor genotypes are unknown

• Genotype cells at a list of HipSci variant sites
• This need not be HipSci-specific. 1000G sites or similar would work just 

as well

• Merge cell VCFs to one big VCF (high % missing genotypes)

• Filter to SNPs on % missing genotypes threshold
• <75% missing genotypes for SS2 data
• <90% missing genotypes for 10x data

• Probabilistic PCA (pcaMethods)

• model-based clustering on PCs (mclust)



For Smartseq2 data, 250k SNPs are called, but most 
genotypes are missing



Prob. PCA on 22k filtered SNP genotypes works well

Fibroblast cells from 3 individual donors



Specifying 4 clusters for mclust VEV model yields clean 
results

Interpret this as 3 “donor” clusters and an “unassigned” cluster

Fibroblast cells from 3 individual donors



Favourable comparison of these results with donor ID 
using genotypes

Adjusted Rand Index: 0.87 (1 is perfect agreement between donor assignments)

1 2 3 4

unknown 0 0 0 31

vass 0 0 84 3

wetu 102 0 0 4

wuye 0 132 0 16

Fibroblast cells from 3 individual donors



• Donor ID without known genotypes works well for 
Smartseq2 protocol, which yields full-length transcript 
data.

• What about for 3’ tag methods like 10x Chromium?



Fewer SNPs called from 10x data and most genotypes for 
a cell and a SNP are missing

Total of 100k SNPs called across all 2553 cells. Few shared across cells.

3110 SNPs with <90% missing genotypes across cells. Use these.



Prob. PCA on 3110 SNPs from 10x yields distinct clusters

Fibroblast cells from 3 individual donors



Excellent agreement with donor ID using donor 
genotypes for 10x data

1 2 3 4

unknown 21 6 4 21

vass 0 944 0 12

wetu 860 0 0 18

wuye 0 0 642 25

Adjusted Rand Index: 0.95 (1 is perfect agreement between donor assignments)

Even better agreement than for SS2 data. Some cells with “unknown” donor 
assignment from approach with donor genotypes look “confidently” assigned to 
cells without using donor genotypes 

Fibroblast cells from 3 individual donors



Donor ID summary and conclusions

• Genetic donor can be identified from SNP genotypes called from scRNA-seq reads.

• Donor ID works both from full-length transcript data (Smartseq2) and 3’ tag data 
(10x).

• Successful donor ID enables pooling of cells from multiple donors per 
experiment/run:

• Scale up donor numbers necessary for QTL studies in minimal runs

• Efficient use of expensive protocols

• Enable experimental designs that are robust to batch effects

• Single-cell RNA-seq expands the phenotypes we can study with QTL mapping



Scaling Bioconductor single-cell tools to 
millions of cells



scater pre-processing and quality control workflow
From raw RNA-seq reads to a clean, tidy dataset ready for downstream analysis

Raw RNA-seq Reads
[Fastq format]

Summarised feature 
expression values

[e.g. produced by 
bioinformatics core]

runKallisto/
readKallisto

runSalmon/readSalmon
newSCESet

Plotting methods

plot

plotQC

plotPCA

plotTSNE

plotMDS

plotDiffusionMap

plotReducedDim

plotExpression

plotPhenoData

plotFeatureData

plotMetadata

plotExprsVsTxLength

plotPlatePosition

Filtered SCESet

Tidy filtered and 
normalised SCESet

Downstream 
modelling and 

statistical analysis

1. Obtain RNA-seq 
expression data

3. QC and filter features

2. QC and filter cells

4. Simple normalisation

5. QC of explanatory variables

SCESet
[Container: S4 class inheriting 
Bioconductor’s ExpressionSet]

Object that contains assay 
data, phenotype data, 

feature data, and more, for 
single-cell analysis

(6. Further 
normalisation)

QC methods

calculateQCMetrics

Miscellaneous methods

getBMFeatureAnnos

summariseExprsAcross
Features

Normalisation methods

normaliseExprs

normalise



scater
QC’d SCESet object 

contains expression assay 
data, phenotype data, 

feature data, and more, for 
single-cell analysis

Expression data

from e.g. kallisto, Salmon, RSEM, 
featureCounts, HTSeq, etc.

Cell and gene metadata

from study design, expression 
quantification tool, etc.

Normalisation

BASiCS
GRM
scran

Differential 
Expression

BASiCS
BPSC

M3Drop 
MAST

monocle
scDD
scde

Heterogeneous 
Expression

BASiCS
scran

Clustering

PAGODA
RaceID

SC3
SINCERA

Latent Variable 
Analysis

cellCODE
PEER

RUVSeq
svaseq

Cell Cycle

cyclone

Pseudotime

DeLorean
destiny

dpt
embeddr
monocle

ouija
SINCELL
TSCAN

scater ecosystem:
take advantage of 
many other 
R/Bioconductor 
packages

cf. ExpressionSet, 
data classes in Seurat, 
monocle



Technological developments drive Moore’s Law in 
single-cell transcriptomics

Svensson V, Vento-Tormo R, Teichmann SA. Moore’s Law in Single Cell Transcriptomics, arXiv, 2017. Available: http://arxiv.org/abs/1704.01379



Two key developments…

• SingleCellExperiment (Davide Risso)
• Base class for single-cell data with out-of-memory representations of assay data.

• Advantages for pkg developers; interoperability

• Beachmat (Aaron Lun, Hervé Pages, Mike Smith)
• C++ API that allows developers to implement computationally intensive 

algorithms in C++ that can be immediately applied to a wide range of R matrix 
classes, including simple matrices, sparse matrices from the Matrix package, and 
HDF5-backed matrices from the HDF5Array package [Lun et al, bioRxiv, 2017]



Adoption of SingleCellExperiment and beachmat
will be better for users and devels

• scater and scran will move to SingleCellExperiment and 
beachmat under the hood for the next release.

• Other developers: you should too!



Acknowledgements: R/Bioconductor pkgs

• Bioconductor: 
scater
scran
VariantAnnotation
snpStats
pcaMethods

• CRAN:
tidyverse
vcfR
adegenet
mclust

Many, many thanks to:

• Bioconductor core team

• Bioconductor developers

• scater users

• All open-source software developers
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Get in touch

@davisjmcc

davis@ebi.ac.uk

Workflow with Aaron Lun and John 
Marioni:

http://bioconductor.org/help/workflows/s
impleSingleCell/

Single-cell course with Martin Hemberg, 
Vlad Kiselev, Tallulah Andrews:

https://hemberg-
lab.github.io/scRNA.seq.course/

#bioc2017
#RCatLadies

#dataparasites
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Cell differentiation experiments leverage iPSCs to look at 
downstream effects

iPSCs provide models for genetic diseases in which we can assay 
regulatory effects of disease variants in differentiated cells.



mclust BIC selects VEV model with 4 groups



Automated mclust approach yields optimal(?) clustering -
no further tweaking looks required


