Package ‘notameStats’

October 15, 2025

Type Package
Title Workflow for non-targeted LC-MS metabolic profiling
Version 0.99.1

Description Provides univariate and multivariate statistics for feature prioritization in untargeted LC-
MS metabolomics research.

License MIT + file LICENSE
Encoding UTF-8

biocViews Biomedicallnformatics, Metabolomics, Datalmport,
MassSpectrometry, BatchEffect, MultipleComparison,
Normalization, QualityControl, Visualization, Preprocessing

Depends R (>=4.5.0), SummarizedExperiment,

Imports BiocGenerics, BiocParallel, broom, dplyr, methods, notame,
stats, tibble, tidyr, utils

Suggests BiocStyle, car, knitr, ImerTest, mixOmics, MuMIn, MUVR2,
notameViz, PERMANOVA, PK, randomForest, rmcorr, testthat
URL https://github.com/hanhineva-1lab/notameStats

BugReports https://github.com/hanhineva-lab/notameStats/issues
RoxygenNote 7.3.3

VignetteBuilder knitr

Config/testthat/parallel true

git_url https://git.bioconductor.org/packages/notameStats

git_branch devel

git_last_commit 58d6492

git_last commit_date 2025-10-03

Repository Bioconductor 3.22

Date/Publication 2025-10-14

Author Anton Klavus [aut, cph] (ORCID:
<https://orcid.org/0000-0003-2612-0230>),
Jussi Paananen [aut, cph] (ORCID:
<https://orcid.org/0000-0001-5100-4907>),
Oskari Timonen [aut, cph] (ORCID:
<https://orcid.org/0000-0002-6317-6260>),
Atte Lihtamo [aut],

https://github.com/hanhineva-lab/notameStats
https://github.com/hanhineva-lab/notameStats/issues
https://orcid.org/0000-0003-2612-0230
https://orcid.org/0000-0001-5100-4907
https://orcid.org/0000-0002-6317-6260

2 cohens_d
Vilhelm Suksi [aut, cre] (ORCID:
<https://orcid.org/0009-0005-1108-518X>),
Retu Haikonen [aut] (ORCID: <https://orcid.org/0000-0003-0830-3850>),
Leo Lahti [aut] (ORCID: <https://orcid.org/0000-0001-5537-637X>),
Kati Hanhineva [aut] (ORCID: <https://orcid.org/0000-0001-6834-7375>),
Ville Koistinen [ctb] (ORCID: <https://orcid.org/0000-0003-1587-8361>),
Olli Kéarkkidinen [ctb] (ORCID: <https://orcid.org/0000-0003-0825-4956>),
Artur Sannikov [ctb]
Maintainer Vilhelm Suksi <vksuks@utu.fi>
Contents
cohens_d L e e e e e 2
3 3
fold_change e 4
importance_rf L 5
muvr_analysis e e e e 5
perform_auc 7
perform_correlation_tests e 8
perform_homoscedasticity_tests oo 10
perform_kruskal_wallis 11
perform_Im 12
perform_lmer L e e 13
perform_Im_anova 14
perform_logistic e 15
perform_non_parametric L. L. 16
perform_oneway_anova Lol e e e e e 17
perform_permanovao e 18
perform_t_test L e e e e e 19
PIS . . e 20
Pls_da e e e e 22
summarize_results oL L e e 24
summary_statiStics e e e e e e e e e e e 25
Index 26
cohens_d Cohen’s D
Description

Computes Cohen’s D for each feature. If time and ID are supplied, change between two time points

is computed for each subject, and Cohen’s d is computed from the changes.

Usage

cohens_d(object, group, id = NULL, time = NULL, assay.type = NULL)

https://orcid.org/0009-0005-1108-518X
https://orcid.org/0000-0003-0830-3850
https://orcid.org/0000-0001-5537-637X
https://orcid.org/0000-0001-6834-7375
https://orcid.org/0000-0003-1587-8361
https://orcid.org/0000-0003-0825-4956

fit_rf

Arguments
object
group
id
time

assay. type

Value

a SummarizedExperiment object
character, name of the group column
character, name of the subject ID column
character, name of the time column

character, assay to be used in case of multiple assays

A data frame with Cohen’s d for each feature.

Examples
data(toy_notame_set, package = "notame")
d_results <- cohens_d(notame: :drop_qcs(toy_notame_set), group = "Group")

d_results_time <- cohens_d(notame: :drop_qgcs(toy_notame_set),
group = "Group”, time = "Time"”, id = "Subject_ID"

)

fit_rf

Fit Random Forest

Description

Fits a random forest, where given response column in pheno data is predicted using the features.
Can be used both for classification and regression. For more information, see the documentation
of randomForest. After fitting the random forest, use importance_rf as a shortcut for getting the
feature importance in random forest prediction.

Usage
fit_rf(
object,
Y,

all_features

covariates
importance
assay. type

Arguments
object
y

all_features

= FALSE,
NULL,
TRUE,
NULL,

a SummarizedExperiment object

character, column name of pheno data giving the dependent variable of the
model

logical, should all features be included in the model? if FALSE, flagged features
are left out

fold_change

covariates character, column names of pheno data to use as covariates in the model, in
addition to molecular features

importance Should importance of features be assessed?

assay.type character, assay to be used in case of multiple assays

other parameters passed to randomForest

Value

An object of class randomForest.

See Also

randomForest, importance_rf

Examples
data(toy_notame_set, package = "notame")
rf <- fit_rf(toy_notame_set, y = "Group")
rf

importance_rf(rf)

fold_change Fold change

Description

Computes fold change between each group for each feature.

Usage

fold_change(object, group, assay.type = NULL)

Arguments

object a SummarizedExperiment object

group character, name of the group column

assay.type character, assay to be used in case of multiple assays
Value

A data frame with fold changes for each feature.

Examples

data(toy_notame_set, package = "notame")

Between groups

fc <- fold_change(toy_notame_set, group = "Group")
Between time points

fc <- fold_change(toy_notame_set, group = "Time")

importance_rf 5

importance_rf Feature importance in random forest

Description

Extracts feature importance in random forest in a nice format.

Usage

importance_rf(rf)

Arguments

rf An object of class randomForest

Value

A data frame of feature importance.

See Also

randomForest, fit_rf

Examples
data(toy_notame_set, package = "notame")
rf <- fit_rf(toy_notame_set, y = "Group”)
rf

importance_rf(rf)

muvr_analysis Multivariate modelling with minimally biased variable selection
(MUVR)

Description

A wrapper around MUVR2 (random forest, PLS(-DA)) and MUVR2_EN (elastic net) functions from the
MUVR?2 package.

Usage

muvr_analysis(
object,
y = NULL,
id = NULL,
multi_level = FALSE,
multi_level_var = NULL,
covariates = NULL,
static_covariates = NULL,

6 muvr_analysis

all_features = FALSE,
nRep = 50,

nOuter = 6,

nInner = nOuter - 1,
varRatio = 0.75,

method = c("PLS", "RF"),
assay.type = NULL,

)
Arguments
object a SummarizedExperiment object
y character, column name in pheno data of the target variable
id character, column name in pheno data of the subject ID variable in case of re-
peated measurements
multi_level logical, whether multi-level modeling should be applied, see Details

multi_level_var
character, column name in pheno data of the variable for splitting the data in
multi-level modeling

covariates, static_covariates
character, column names of pheno data to use as covariates in the model, in
addition to molecular features. static_covariates are ignored for non-multi-
level models. For multi-level models, the change in covariates is computed,
while static_covariates are taken from the first time point.

all_features logical, should all features be included in the model? if FALSE, flagged features
are left out

nRep Number of repetitions of double CV, parameter of MUVR

nOuter Number of outer CV loop segments, parameter of MUVR

nInner Number of inner CV loop segments, parameter of MUVR

varRatio Ratio of variables to include in subsequent inner loop iteration, parameter of
MUVR

method Multivariate method. Supports "PLS’, ’RF’ and "EN’

assay.type character, assay to be used in case of multiple assays

other parameters to MUVR2 or MUVR2_EN and getVar (when method == "EN")

Details

This function is now using the MUVR?2 package, characterized as an upgrade extending the original
MUVR package by the inclusion of elastic net regression (EN) and some functionality not covered
by this wrapper. Elastic net regression supports covariate adjustment by suppressing regularization
of specified features from the regularization procedure. Note that this is different from simply
including covariates such as sex. EN also differs from PLS and RF in that no recursive variable
elimination is performed, so an additional scheme is used to obtain the 'min’, ’'mid’ and 'max’
models using getVar.

Sex would be entered as a static covariate, since the change in sex is zero for all individuals, so
computing the change and using that as a covariate does not make sense.

Note that there are several more plots available in MUVR2 for inspecting the results, notably
plotMV, plotStability and plotVIRank Many of these return different plots depending on the
model specification.

perform_auc 7

Value

A MUVR object.

See Also

MUVR2 MUVR2_EN getVar plotMV plotStability plotVIRank plotVAL

Examples

data(toy_notame_set, package = "notame")
ex_set <- notame::drop_gcs(toy_notame_set)[1:10,]
ex_set$Injection_order <- as.numeric(ex_set$Injection_order)
Simple PLS regression model
pls_model <- muvr_analysis(ex_set,

y = "Injection_order”, nRep = 2, method = "PLS")

RF classification with covariate and repeated measures (not longitudinal)
rf_model <- muvr_analysis(ex_set, y = "Group”, id = "Subject_ID",
nRep = 2, method = "RF", covariates = "Injection_order")

RF classification on multilevel variable comparing levels of y
rf_model_ <- muvr_analysis(ex_set,
y = "Group”, multi_level = TRUE, id = "Subject_ID",
multi_level_var = "Time", method = "RF"”, nRep = 2)

EN regression on multilevel variable with covariate and static covariate
ex_set$Group <- as.numeric(ex_set$Group)

en_model <- muvr_analysis(ex_set, id = "Subject_ID",
multi_level = TRUE, multi_level_var = "Time",
covariates = "Injection_order”, static_covariates = "Group",

method = "EN", nRep = 2)

perform_auc Area under curve

Description

Compute area under curve (AUC) for each subject and feature. Creates a pseudo SummarizedEx-
periment object, where the "samples" are subjects (or subject/group combinations in case the same
subjects are submitted to different treatments) and the "abundances" are AUCs. This object can then
be used to compute results of e.g. t-tests of AUCs between groups.

Usage

perform_auc(object, time, subject, group, assay.type = NULL)

Arguments

object a SummarizedExperiment object
time, subject, group
column names of pheno data holding time, subject and group labels

assay. type character, assay to be used in case of multiple assays

8 perform_correlation_tests

Value

A pseudo SummarizedExperiment object with the AUCs.

See Also
auc
Examples
data(toy_notame_set, package = "notame")
Drop QC samples before computing AUCs
aucs <- perform_auc(notame: :drop_gcs(toy_notame_set), time = "Time",

subject = "Subject_ID", group = "Group"”)
t-test with the AUCs
t_test_results <- perform_t_test(aucs, formula_char = "Feature ~ Group")

perform_correlation_tests
Correlation test

Description

Performs a correlation test between two sets of variables. All the variables must be either fea-
ture names or column names of pheno data (sample information). There are two ways to use this
function: either provide a set of variables as x, and all correlations between those variables are
computed. Or provide two distinct sets of variables x, y and correlations between each x variable
and each y variable are computed.

Usage

perform_correlation_tests(
object,
X,
y =X,
id = NULL,
object2 = NULL,
fdr = TRUE,
all_pairs = TRUE,
duplicates = FALSE,
assay.typel = NULL,
assay.type2 = NULL,

)
Arguments
object a SummarizedExperiment object
X character vector, names of variables to be correlated
y character vector, either identical to x (the default) or a distinct set of variables to

be correlated against x

perform_correlation_tests 9

id

object2

fdr

all_pairs

duplicates

assay.typel
assay.type?2

Value

character, column name for subject IDs. If provided, the correlation will be
computed using the rmcorr package

optional second object. If provided, x variables will be taken from object and y
variables will be taken from object2. Both objects should have the same number
of samples.

logical, whether p-values from the correlation test should be adjusted with FDR
correction

logical, whether all pairs between x and y should be tested. If FALSE, x and y
give the exact pairs of variables to test, and should have the same length.

logical, whether correlations should be duplicated. If TRUE, each correlation will
be included in the results twice, where the order of the variables ’(which is x and
which is y) is changed. Can be useful for e.g. plotting a heatmap of the results,
see examples of plot_effect_heatmap.

character, assay of object(1) to be used in case of multiple assays
character, assay of object2 to be used in case of multiple assays

other parameters passed to cor. test, such as method

A data frame with the results of correlation tests: the pair of variables, correlation coefficient and

p-value.

See Also

cor.test, rmcorr

Examples

data(toy_notame_set, package = "notame")

Correlations between all features

correlations <- perform_correlation_tests(toy_notame_set,
X = rownames(toy_notame_set), id = "Subject_ID")

Spearman Correlations between features and sample information variables
Drop QCs and convert time to numeric
no_gc <- notame: :drop_qgcs(toy_notame_set)
no_qc$Time <- as.numeric(no_qc$Time)
correlations <- perform_correlation_tests(no_qc,
X = rownames(toy_notame_set),
y = c¢("Time", "Injection_order"”), method = "spearman”

)

Correlations between variables from two distinct objects
cross_object_cor <-perform_correlation_tests(toy_notame_set,
X = rownames(toy_notame_set),
object2 = toy_notame_set,
y = rownames(toy_notame_set),
all_pairs = FALSE

10 perform_homoscedasticity_tests

perform_homoscedasticity_tests
Test homoscedasticity

Description

Performs Bartlett’s, Levene’s and Fligner-Killeen tests for equality of variances.

Usage

perform_homoscedasticity_tests(
object,
formula_char,
all_features = FALSE,
assay.type = NULL

Arguments

object a SummarizedExperiment object
formula_char character, the formula to be used in the linear model (see Details)
all_features should all features be included in FDR correction?

assay. type character, assay to be used in case of multiple assays

Details

The model is fit on combined_data(object). Thus, column names in pheno data can be specified. To
make the formulas flexible, the word "Feature" must be used to signal the role of the features in the
formula. "Feature" will be replaced by the actual Feature IDs during model fitting. For example, if
testing for equality of variances in study groups, use "Feature ~ Group".

Value

A data frame with the results.

See Also

bartlett. test, leveneTest, fligner.test

Examples

data(toy_notame_set, package = "notame")
perform_homoscedasticity_tests(toy_notame_set,
formula_char = "Feature ~ Group")

perform_kruskal_wallis 11

perform_kruskal_wallis
Kruskal-Wallis rank-sum test

Description

Performs Kruskal-Wallis rank-sum test for equality.

Usage

perform_kruskal_wallis(
object,
formula_char,
all_features = FALSE,
assay.type = NULL

Arguments

object a SummarizedExperiment object
formula_char character, the formula to be used in the linear model (see Details)
all_features should all features be included in FDR correction?

assay. type character, assay to be used in case of multiple assays

Details

The model is fit on combined_data(object). Thus, column names in pheno data can be specified. To
make the formulas flexible, the word "Feature" must be used to signal the role of the features in the
formula. "Feature" will be replaced by the actual Feature IDs during model fitting. For example, if
testing for equality of means in study groups, use "Feature ~ Group".

Value

A data frame with the results.

See Also

kruskal.test

Examples

data(toy_notame_set, package = "notame")
perform_kruskal_wallis(toy_notame_set, formula_char = "Feature ~ Group")

12 perform_Im

perform_1m Linear models

Description

Fits a linear model separately for each feature. Returns all relevant statistics.

Usage

perform_lm(object, formula_char, all_features = FALSE, assay.type = NULL, ...)
Arguments

object a SummarizedExperiment object

formula_char character, the formula to be used in the linear model (see Details)
all_features should all features be included in FDR correction?
assay.type character, assay to be used in case of multiple assays

additional parameters passed to 1m

Details

The linear model is fit on combined_data(object). Thus, column names in pheno data can be spec-
ified. To make the formulas flexible, the word "Feature" must be used to signal the role of the
features in the formula. "Feature" will be replaced by the actual Feature IDs during model fitting,
see the example.

Value

A data frame with one row per feature, with all the relevant statistics of the linear model as columns.

See Also

Im

Examples

data(toy_notame_set, package = "notame")

A simple example without QC samples

Features predicted by Group and Time

Im_results <- perform_lm(notame: :drop_qgcs(toy_notame_set),
formula_char = "Feature ~ Group + Time")

perform_Ilmer 13

perform_lmer Linear mixed models

Description

Fits a linear mixed model separately for each feature. Returns all relevant statistics.

Usage

perform_lmer(
object,
formula_char,
all_features = FALSE,
ci_method = c("Wald"”, "profile"”, "boot"),
test_random = FALSE,
assay.type = NULL,

Arguments

object a SummarizedExperiment object
formula_char character, the formula to be used in the linear model (see Details)

all_features should all features be included in FDR correction?

ci_method The method for calculating the confidence intervals as in confint

test_random logical, whether tests for the significance of the random effects should be per-
formed

assay. type character, assay to be used in case of multiple assays

additional parameters passed to 1lmer

Details

The model is fit on combined_data(object). Thus, column names in pheno data can be specified. To
make the formulas flexible, the word "Feature" must be used to signal the role of the features in the
formula. "Feature" will be replaced by the actual Feature IDs during model fitting, see the example.
With bootstrap ("boot") confidence intervals, the results are reproducible if RNGseed is set for the
BiocParallel backend.

Value
A data frame with one row per feature, with all the relevant statistics of the linear mixed model as
columns.

See Also

1mer for model specification

14 perform_Im_anova

Examples

data(toy_notame_set, package = "notame")

A simple example without QC samples

Features predicted by Group and Time as fixed effects with Subject ID as a
random effect

Imer_results <- perform_lmer(notame: :drop_qgcs(toy_notame_set),

formula_char = "Feature ~ Group + Time + (1 | Subject_ID)",
ci_method = "Wald"
)
perform_lm_anova Linear models ANOVA table
Description

Fits a linear model separately for each feature and compute an ANOVA table. Returns all relevant
statistics.

Usage

perform_lm_anova(
object,
formula_char,
all_features = FALSE,
Im_args = NULL,
anova_args = NULL,
assay.type = NULL

Arguments

object a SummarizedExperiment object
formula_char character, the formula to be used in the linear model (see Details)

all_features should all features be included in FDR correction?

Im_args list of arguments to Im, list names should be parameter names
anova_args list of arguments to anova, list names should be parameter names
assay.type character, assay to be used in case of multiple assays

Details

The linear model is fit on combined_data(object). Thus, column names in pheno data can be spec-
ified. To make the formulas flexible, the word "Feature" must be used to signal the role of the
features in the formula. "Feature" will be replaced by the actual Feature IDs during model fitting,
see the example.

Value

A data frame with one row per feature, with all the relevant statistics of the linear model as columns.

perform_logistic 15

See Also
Im

Examples

data(toy_notame_set, package = "notame")

A simple example without QC samples

Features predicted by Group and Time

Im_anova_results <- perform_lm_anova(notame: :drop_gcs(toy_notame_set),

formula_char = "Feature ~ Group + Time")
perform_logistic Logistic regression
Description

Fits a logistic regression model separately for each feature. Returns all relevant statistics.

Usage

perform_logistic(
object,
formula_char,
all_features = FALSE,
assay.type = NULL,

Arguments

object a SummarizedExperiment object

formula_char character, the formula to be used in the linear model (see Details)
all_features should all features be included in FDR correction?

assay. type character, assay to be used in case of multiple assays

additional parameters passed to glm

Details

The logistic regression model is fit on combined_data(object). Thus, column names in pheno data
can be specified. To make the formulas flexible, the word "Feature" must be used to signal the role

of the features in the formula. "Feature" will be replaced by the actual Feature IDs during model
fitting, see the example.

Value

A data frame with one row per feature, with all the relevant statistics of the linear model as columns.

See Also

glm

16 perform_non_parametric

Examples

data(toy_notame_set, package = "notame")

A simple example without QC samples

Time predicted by features

logistic_results <- perform_logistic(notame: :drop_gcs(toy_notame_set),
formula_char = "Time ~ Feature + Group"

)

perform_non_parametric
Pairwise and paired non-parametric tests

Description

Performs pairwise and paired non-parametric tests. The default is Mann- Whitney U test, use
is_paired for Wilcoxon signed rank tests.

Usage

perform_non_parametric(
object,
formula_char,
is_paired = FALSE,
id = NULL,
all_features = FALSE,
assay.type = NULL,

)
Arguments
object a SummarizedExperiment object
formula_char character, the formula to be used in the tests
is_paired logical, use paired test
id character, name of the subject identification column for paired version

all_features should all features be included in FDR correction?
assay. type character, assay to be used in case of multiple assays

other parameters passed to test wilcox. test

Details

P-values of each comparison are corrected separately from each other. The model is fit on com-
bined_data(object). Thus, column names in pheno data can be specified. To make the formulas
flexible, the word "Feature" must be used to signal the role of the features in the formula. "Feature"
will be replaced by the actual features during model fitting. For example, if testing for equality of
means in study groups, use "Feature ~ Group".

Value

A data frame with the results.

perform_oneway_anova 17

See Also

wilcox.test

Examples

data(toy_notame_set, package = "notame")

Including QCs as a study group for example for pairwise tests

mann_whitney_results <- perform_non_parametric(toy_notame_set,
formula_char = "Feature ~ Group")

Using paired mode (pairs with QC are skipped as there are no common IDs in

'toy_notame_set')

wilcoxon_signed_results <- perform_non_parametric(toy_notame_set,
formula_char = "Feature ~ Time",
is_paired = TRUE,
id = "Subject_ID")

Only two groups

mw_results <-perform_non_parametric(notame: :drop_gcs(toy_notame_set),
formula_char = "Feature ~ Group")

perform_oneway_anova Welch’s ANOVA and classic ANOVA

Description

Performs ANOVA with Welch’s correction as default, to deal with heterogeneity of variances.
Can also perform classic ANOVA with assumption of equal variances. Uses base R function
oneway. test.

Usage
perform_oneway_anova(
object,
formula_char,

all_features = FALSE,
assay.type = NULL,

Arguments

object a SummarizedExperiment object
formula_char character, the formula to be used in the linear model (see Details).
all_features should all features be included in FDR correction?
assay.type character, assay to be used in case of multiple assays
other parameters to oneway . test

Details

The model is fit on combined_data(object). Thus, column names in pheno data can be specified. To
make the formulas flexible, the word "Feature" must be used to signal the role of the features in the
formula. "Feature" will be replaced by the actual Feature IDs during model fitting. For example, if
testing for equality of means in study groups, use "Feature ~ Group".

18

Value

perform_permanova

A data frame with the results.

See Also

oneway . test

Examples
data(toy_notame_set, package = "notame")
perform_oneway_anova(toy_notame_set, formula_char = "Feature ~ Group")

perform_permanova

PERMANOVA

Description

Performs permutational multivariate analysis of variance. Uses package called PERMANOVA.

Usage
perform_permanova(
object,
group,
all_features = FALSE,
transform = "Standardize columns”,
coef = "Pythagorean”,
assay.type = NULL,
)
Arguments
object a SummarizedExperiment object
group character, name of the column to compare

all_features
transform

coef

assay. type

Value

should all features be included?
Transformation to use in IniTransform. By default uses "Standardize columns".

Coefficient to calculate continuous distances in IniTransform. By default uses
Pythagorean distances.

character, assay to be used in case of multiple assays

other parameters to PERMANOVA

A PERMANOVA object.

perform_t_test 19

Examples

data(toy_notame_set, package = "notame")

permanova_res <- perform_permanova(
notame: :drop_qcs(toy_notame_set),
group = "Group")

perform_t_test Pairwise and paired t-tests

Description

Performs pairwise and paired t-tests. The R default is Welch’s t-test (unequal variances), use
var.equal = TRUE for Student’s t-test. Use is_paired for paired t-tests.

Usage

perform_t_test(
object,
formula_char,
is_paired = FALSE,
id = NULL,
all_features = FALSE,
assay.type = NULL,

Arguments

object a SummarizedExperiment object

formula_char character, the formula to be used in the linear model (see Details)
is_paired logical, use paired t-test

id character, name of the subject identification column for paired version
all_features should all features be included in FDR correction?

assay. type character, assay to be used in case of multiple assays

other parameters passed to t. test

Details

P-values of each comparison are corrected separately from each other.

Value

A data frame with the results.

See Also

t.test

20 pls

Examples

data(toy_notame_set, package = "notame")
Including QCs as a study group for example
t_test_results <- perform_t_test(toy_notame_set,
formula_char = "Feature ~ Group")
Using paired mode (pairs with QC are skipped as there are no common IDs in
'toy_notame_set')
t_test_results <- perform_t_test(toy_notame_set,
formula_char = "Feature ~ Time", is_paired = TRUE, id = "Subject_ID")
Only two groups
t_test_results <- perform_t_test(notame::drop_qcs(toy_notame_set),
formula_char = "Feature ~ Group")

pls PLS

Description

Simple wrappers for fitting a PLS model using mixOmics package. The result can then be passed
to many of the mixOmics functions for prediction, performance evaluation etc.

Usage

mixomics_pls(
object,
Y,
ncomp,
all_features = FALSE,
covariates = NULL,
assay.type = NULL,

mixomics_pls_optimize(
object,
Y,
ncomp,
plot_perf = FALSE,
folds = 5,
nrepeat = 50,
all_features = FALSE,
covariates = NULL,
assay.type = NULL,

mixomics_spls_optimize(
object,
Y,
ncomp,

pls

plot_perf = FALSE,

n_features = c(seq_len(10), seq(20, 300, 10)),
folds = 5,

nrepeat = 50,

all_features = FALSE,

covariates = NULL,

assay.type = NULL,

)
Arguments
object a SummarizedExperiment object
y character vector, column names of the grouping variable to predict
ncomp number of X components

all_features logical, should all features be included in the model? if FALSE, flagged features

are left out

covariates character, column names of pheno datato use as covariates in the model, in ad-

dition to molecular features
assay. type character, assay to be used in case of multiple assays

any parameters passed to pls or spls

plot_perf plot performance of models in cross-validation
folds the number of folds to use in k-fold cross validation
nrepeat the number of times to repeat the cross validation. Lower this for faster testing.
n_features the number of features to try for each component
Details

* mixomics_pls A simple PLS model with set number of components and all features

* mixomics_pls_optimize Test different numbers of components

* mixomics_spls_optimize sPLS model: Test different numbers of components and features

Value

An object of class "mixo_pls" or "mixo_spls". For the optimized and sparse models, a list with

object of class "mixo_plsda" and a performance plot.

See Also

pls, perf, spls, tune.spls

Examples
data(toy_notame_set, package = "notame")
pls_res <- mixomics_pls(toy_notame_set, y = "Injection_order"”, ncomp = 3)

Cross-validation repeated only 5 times for quick run time
pls_opt <- mixomics_pls_optimize(toy_notame_set,

y = "Injection_order”, ncomp = 3, nrepeat = 5)
spls_opt <- mixomics_spls_optimize(toy_notame_set,
y = "Injection_order”, ncomp = 3,

n_features = ¢(1:10, 12, 15, 20), nrepeat = 5

22 pls_da

)
Plot score plot of any final model
mixOmics::plotIndiv(pls_res,

comp = seq_len(2), group = toy_notame_set$Group,

ind.names = FALSE, title = "PLS scores plot”, legend = TRUE)

Proportion of variance explained
pls_res$prop_expl_var$X[seq_len(2)] |> round(digits = 3) * 100

pls_da PLS-DA

Description

A simple wrapper for fitting a PLS-DA model using mixOmics package. The object can then be
passed to many of the mixOmics functions for prediction, performance evaluation etc.

* mixomics_plsda A simple PLS-DA model with set number of components and all features

* mixomics_plsda_optimize Test different numbers of components, choose the one with min-
imal balanced error rate

* mixomics_splsda_optimize Test different numbers of components and features, choose the
one with minimal balanced error rate

Usage

mixomics_plsda(
object,
Y,
ncomp,
all_features = FALSE,
covariates = NULL,
assay.type = NULL,

mixomics_plsda_optimize(
object,
Y,
ncomp,
plot_perf = FALSE,
folds = 5,
nrepeat = 50,
all_features = FALSE,
covariates = NULL,
assay.type = NULL,

mixomics_splsda_optimize(
object,

pls_da

Y,
ncomp,

dist,

plot_perf = FALSE,

n_features = c(seq_len(10), seq(20, 300, 10)),
folds = 5,

nrepeat = 50,

all_features = FALSE,

covariates = NULL,

assay.type = NULL,

)
Arguments
object a SummarizedExperiment object
y character, column name of the grouping variable to predict
ncomp the number of X components

23

all_features logical, should all features be included in the model? if FALSE, flagged features

are left out

covariates character, column names of pheno data to use as covariates in the model, in

addition to molecular features
assay.type character, assay to be used in case of multiple assays

any parameters passed to plsda

plot_perf plot performance of models in cross-validation
folds the number of folds to use in k-fold cross validation
nrepeat the number of times to repeat the cross validation. Lower this for faster testing.
dist the distance metric to use, one of "max.dist", "mahalanobis.dist", "centroids.dist".
use mixomics_plsda_optimize to find the best distance metric
n_features the number of features to try for each component
Value

An object of class "mixo_plsda" or for the optimized and sparse models, a list with object of class

"mixo_plsda" and a performance plot.

See Also

plsda, perf, splsda, tune.splsda

Examples

data(toy_notame_set, package = "notame")
nogc <- notame::drop_qcs(toy_notame_set)
plsda_res <- mixomics_plsda(nogc, y = "Group”, ncomp = 2)
Cross-validation repeated only 5 times for quick run time
set.seed(38)
plsda_opt <- mixomics_plsda_optimize(noqc,
y = "Group"”, ncomp = 3, nrepeat = 5
)
set.seed(38)

24 summarize_results

splsda_opt <- mixomics_splsda_optimize(noqc,
y = "Group”, dist = "max.dist”, ncomp = 2,
n_features = c¢(1:10, 12, 15, 20), nrepeat = 5

)

Plot PLS-DA scores

mixOmics::plotIndiv(plsda_res,
comp = seq_len(2), group = notame::drop_gcs(toy_notame_set)$Group,
ind.names = FALSE, title = "PLS-DA scores plot”, legend = TRUE,
ellipse = TRUE)

Plot prediction areas
background <- mixOmics::background.predict(plsda_res,
comp.predicted = 2, dist = "max.dist")
mixOmics::plotIndiv(plsda_res,
comp = seq_len(2), group = notame::drop_qcs(toy_notame_set)$Group,
ind.names = FALSE,
title = "prediction areas”, legend = TRUE, background = background)

summarize_results Statistics cleaning

Description

Uses regexp to remove unnecessary columns from statistics results data frame. Can also rename
columns effectively.

Usage
summarize_results(
df,
remove = c("Intercept”, "CI95", "Std_error”, "t_value”, "z_value”, "R2"),

rename = NULL,
summary = TRUE,
p_limit = 0.05,

fdr = TRUE
)
Arguments
df data frame, statistics results
remove list, should contain strings that are matching to unwanted columns
rename named list, names should contain matches that are replaced with values
summary logical, should summary columns be added
p_limit numeric, limit for p-values to be counted
fdr logical, should summary be done with fdr-fixed values
Value

A data frame with removed and/or renamed columns.

summary._statistics 25

Examples

data(toy_notame_set, package = "notame")

Simple manipulation to linear model results

Im_results <- perform_lm(notame::drop_qcs(toy_notame_set),
formula_char = "Feature ~ Group + Time")

Im_results <- summarize_results(lm_results,
rename = c("GroupB” = "GroupB_vs_A", "Time2" = "Time2_vs_1")

)

summary_statistics Summary statistics

Description

Computes summary statistics for each feature, possibly grouped by a factor. The statistics include
mean, standard deviation (sd), median, median absolute deviation (mad), minimum (min), maxi-
mum (max) as well as 25

Usage

summary_statistics(object, grouping_cols = NULL, assay.type = NULL)

Arguments

object a SummarizedExperiment object

grouping_cols character vector, the columns by which grouping should be done. Use NA to
compute statistics without grouping.

assay.type character, assay to be used in case of multiple assays

Value

A data frame with the summary statistics.

Examples
data(toy_notame_set, package = "notame")
Group by "Group”
sum_stats <- summary_statistics(toy_notame_set, grouping_cols = "Group")

Group by Group and Time

sum_stats <- summary_statistics(toy_notame_set,
grouping_cols = c("Group”, "Time"))

No Grouping

sum_stats <- summary_statistics(toy_notame_set)

Index

auc, 8 perform_logistic, 15
perform_non_parametric, 16
bartlett.test, /10 perform_oneway_anova, 17
perform_permanova, 18
cohens_d, 2 perform_t_test, 19
confint, /3 PERMANOVA, 18
cor.test, 9 plot_effect_heatmap, 9
) plotMvV, 6, 7
fitrf.3,5 plotStability, 6, 7
fligner.test, 10 plotVAL, 7
fold_change, 4 plotVIRank, 6, 7
getvar, 6, 7 pls, 20, 21
pls_da, 22
glm, 15 plsda, 23
importance_rf,3,4,5 randomForest, 3—5
IniTransform, I8 rmcorr, 9
kruskal.test, 11 spls, 21
splsda, 23

leveneTest, 10
Im, 12,15
lmer, 13

summarize_results, 24
SummarizedExperiment, 3, 4, 6-8, 10-19, 21,
25

mixomics_pls (pls), 20 summary_statistics, 25

mixomics_pls_optimize (pls), 20
mixomics_plsda (pls_da), 22
mixomics_plsda_optimize, 23
mixomics_plsda_optimize (pls_da), 22
mixomics_spls_optimize (pls), 20 wilcox.test, 16, 17
mixomics_splsda_optimize (pls_da), 22 |
MUVR2, 5-7

MUVR2_EN, 5-7

muvr_analysis, 5

t.test, /19
tune.spls, 2/
tune.splsda, 23

oneway.test, 17, I8

perf, 21,23

perform_auc, 7
perform_correlation_tests, 8
perform_homoscedasticity_tests, 10
perform_kruskal_wallis, 11
perform_1m, 12

perform_lm_anova, 14
perform_lmer, 13

26

	cohens_d
	fit_rf
	fold_change
	importance_rf
	muvr_analysis
	perform_auc
	perform_correlation_tests
	perform_homoscedasticity_tests
	perform_kruskal_wallis
	perform_lm
	perform_lmer
	perform_lm_anova
	perform_logistic
	perform_non_parametric
	perform_oneway_anova
	perform_permanova
	perform_t_test
	pls
	pls_da
	summarize_results
	summary_statistics
	Index

