We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.
library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)
# How to convert your excel sheet into vector of static and functional markers
markers
## $input
## [1] "CD3(Cd110)Di" "CD3(Cd111)Di" "CD3(Cd112)Di"
## [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di" "CD45(In115)Di"
## [7] "CD19(Nd142)Di" "CD22(Nd143)Di" "IgD(Nd145)Di"
## [10] "CD79b(Nd146)Di" "CD20(Sm147)Di" "CD34(Nd148)Di"
## [13] "CD179a(Sm149)Di" "CD72(Eu151)Di" "IgM(Eu153)Di"
## [16] "Kappa(Sm154)Di" "CD10(Gd156)Di" "Lambda(Gd157)Di"
## [19] "CD24(Dy161)Di" "TdT(Dy163)Di" "Rag1(Dy164)Di"
## [22] "PreBCR(Ho165)Di" "CD43(Er167)Di" "CD38(Er168)Di"
## [25] "CD40(Er170)Di" "CD33(Yb173)Di" "HLA-DR(Yb174)Di"
##
## $functional
## [1] "pCrkL(Lu175)Di" "pCREB(Yb176)Di" "pBTK(Yb171)Di" "pS6(Yb172)Di"
## [5] "cPARP(La139)Di" "pPLCg2(Pr141)Di" "pSrc(Nd144)Di" "Ki67(Sm152)Di"
## [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di" "pBLNK(Gd160)Di"
## [13] "pP38(Tm169)Di" "pSTAT5(Nd150)Di" "pSyk(Dy162)Di" "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]
# Selection of the k. See "Finding Ideal K" vignette
k <- 30
# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn,
# and the euclidean distance between
# itself and the cell of interest
# Indices
str(wand.nn[[1]])
## int [1:1000, 1:30] 633 827 125 365 640 713 342 741 640 469 ...
wand.nn[[1]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 633 476 207 741 65 794 927 131 828 30
## [2,] 827 181 983 160 471 600 446 630 951 60
## [3,] 125 69 545 160 856 485 951 770 961 570
## [4,] 365 429 851 824 690 207 634 367 412 935
## [5,] 640 59 362 743 955 561 972 772 547 862
## [6,] 713 210 768 835 759 208 453 774 310 527
## [7,] 342 687 808 536 655 417 95 474 744 23
## [8,] 741 766 606 598 325 927 87 558 68 355
## [9,] 640 955 973 745 217 349 262 770 104 77
## [10,] 469 770 69 961 526 485 738 732 545 834
## [11,] 382 530 423 232 974 474 105 279 219 752
## [12,] 396 793 965 603 356 58 511 890 220 437
## [13,] 112 860 362 600 77 557 433 59 145 862
## [14,] 50 37 877 726 656 781 528 969 806 914
## [15,] 533 111 537 239 904 731 918 993 876 80
## [16,] 384 676 328 488 976 217 947 561 628 745
## [17,] 529 125 901 757 770 745 945 966 818 420
## [18,] 685 766 106 434 611 427 87 675 169 8
## [19,] 926 287 673 902 71 138 149 732 629 669
## [20,] 933 941 320 637 396 656 271 793 668 721
# Distance
str(wand.nn[[2]])
## num [1:1000, 1:30] 4.86 3.98 2.71 5.72 3.4 ...
wand.nn[[2]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 4.861345 5.184222 5.312682 5.317264 5.553150 5.585368 5.623047 5.636201
## [2,] 3.975606 4.026514 4.054488 4.129565 4.221898 4.285979 4.287049 4.357351
## [3,] 2.709035 2.802767 2.904681 3.016592 3.046709 3.211902 3.280049 3.287317
## [4,] 5.719366 5.948293 5.976489 6.209535 6.234971 6.276826 6.287511 6.336659
## [5,] 3.395219 3.487585 3.497812 3.589995 3.604157 3.719833 3.781183 3.793780
## [6,] 2.668782 3.197880 3.221092 3.337421 3.538971 3.589628 3.637605 3.717566
## [7,] 3.657222 4.090961 4.133583 4.152012 4.204723 4.228240 4.346444 4.487537
## [8,] 2.948288 3.048076 3.380441 3.405524 3.748988 3.773205 3.778793 3.824310
## [9,] 2.844415 3.055669 3.067158 3.334884 3.370648 3.384074 3.433616 3.453077
## [10,] 1.977624 2.684652 2.728091 2.733886 2.854364 2.976749 3.013004 3.037051
## [11,] 3.472081 3.556273 3.644647 3.803833 3.873390 3.900894 3.902911 3.935712
## [12,] 2.102466 2.657977 2.941177 2.969952 3.098878 3.121466 3.123740 3.129891
## [13,] 3.629164 3.845850 3.859642 3.964399 4.331667 4.352946 4.443610 4.457692
## [14,] 4.327196 4.371005 4.375177 4.386573 4.437174 4.444409 4.476672 4.510921
## [15,] 2.980235 3.074132 3.468961 3.487093 3.524122 3.618231 3.682096 3.812958
## [16,] 2.781353 2.960756 2.992707 3.015991 3.096518 3.118008 3.148277 3.274980
## [17,] 1.758925 2.482125 2.625114 2.686341 2.827630 2.847653 2.921518 2.929386
## [18,] 3.531789 3.543183 3.548345 3.969390 3.974825 4.050110 4.057591 4.062028
## [19,] 4.127802 4.208518 4.227662 4.264990 4.350383 4.372530 4.456313 4.539851
## [20,] 4.162920 4.332648 4.471731 4.778760 4.841182 4.875379 4.928045 4.935723
## [,9] [,10]
## [1,] 5.703959 5.705084
## [2,] 4.370370 4.518312
## [3,] 3.328266 3.333672
## [4,] 6.362762 6.558309
## [5,] 3.884063 3.900559
## [6,] 3.759464 3.801203
## [7,] 4.578400 4.595127
## [8,] 3.826311 3.826477
## [9,] 3.531297 3.541155
## [10,] 3.067935 3.087184
## [11,] 3.993443 4.001449
## [12,] 3.193380 3.256615
## [13,] 4.511718 4.525616
## [14,] 4.587073 4.636025
## [15,] 3.920528 3.985371
## [16,] 3.343021 3.361775
## [17,] 2.961424 2.967181
## [18,] 4.067571 4.092243
## [19,] 4.541981 4.550227
## [20,] 4.951130 4.993592
This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.
wand.scone <- SconeValues(nn.matrix = wand.nn,
cell.data = wand.combined,
scone.markers = funct.markers,
unstim = "basal")
wand.scone
## # A tibble: 1,000 × 34
## `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
## <dbl> <dbl> <dbl>
## 1 0.936 1 0.913
## 2 0.831 0.949 0.932
## 3 0.668 1 0.849
## 4 0.673 0.929 0.849
## 5 1 1 1
## 6 1 0.902 0.987
## 7 0.965 0.960 1
## 8 1 0.902 0.876
## 9 0.856 0.902 0.980
## 10 0.766 0.902 0.849
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹`pCREB(Yb176)Di.IL7.qvalue`,
## # ²`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## # `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## # `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## # `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …
If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.
I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).
I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.
An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:
# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
## `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
## <dbl> <dbl> <dbl> <dbl>
## 1 -0.0951 0.290 -0.0805 0.143
## 2 -0.0645 -0.152 -0.178 0.173
## 3 0.0680 0.521 0.261 0.316
## 4 -0.477 -0.489 -0.486 0.880
## 5 -0.254 -0.193 -0.121 -0.267
## 6 -0.420 -0.408 -0.514 -0.637
## 7 -0.248 -0.217 -0.352 0.628
## 8 0.718 0.475 1.05 0.665
## 9 0.486 0.946 0.318 0.123
## 10 -0.467 -0.127 -0.522 0.527
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## # `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## # `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## # `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## # `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## # `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
## num [1:1000] 0.172 0.215 0.296 0.152 0.253 ...