1 Introduction

Single-cell sequencing is an emerging technology in the field of immunology and oncology that allows researchers to couple RNA quantification and other modalities, like immune cell receptor profiling at the level of an individual cell. A number of workflows and software packages have been created to process and analyze single-cell transcriptomic data. These packages allow users to take the vast dimensionality of the data generated in single-cell-based experiments and distill the data into novel insights. Some of the packages within the R environment that offer single-cell immune profiling support include scRepertoire, immunarch, and immcantation. None of these packages offer support for deep-learning models for immune repertoire profiling.

immApex is meant to serve as an API for deep-learning models based on immune receptor sequencing. These functions extract or generate amino acid or nucleotide sequences and prepare them for deep learning tasks through Keras3. immApex is the underlying structure for the BCR models in Ibex and TCR models in Trex. It should be noted that the tools here are created for immune receptor sequences; they will work more generally for nucleotide or amino acid sequences. The package itself supports AIRR, Adaptive, and 10x formats and interacts with the scRepertoire R package.

More information is available at the immApex GitHub Repo.

1.1 Loading Libraries

suppressMessages(library(immApex))
suppressMessages(library(keras3))
suppressMessages(library(ggplot2))
suppressMessages(library(viridis))
suppressMessages(library(magrittr))

2 Getting and Manipulating Sequences

2.1 generateSequences

Generating synthetic sequences is a quick way to start testing the model code. generateSequences() can also generate realistic noise for generative adversarial networks.

Parameters for generateSequences()

  • prefix.motif Add a defined sequence to the start of the generated sequences.
  • suffix.motif Add a defined sequence to the end of the generated sequences
  • number.of.sequences Number of sequences to generate
  • min.length Minimum length of the final sequence (will be adjusted if incongruent with prefix.motif/suffix.motif)
  • max.length Maximum length of the final sequence
  • sequence.dictionary The letters to use in sequence generation (default are all amino acids)
sequences <- generateSequences(prefix.motif = "CAS",
                               suffix.motif = "YF",
                               number.of.sequences = 1000,
                               min.length = 8,
                               max.length = 16)
head(sequences)
## [1] "CASTCTMLANRYF"    "CASFTKNEEETYF"    "CASDGSGVAHHYF"    "CASDILAYWYEYF"   
## [5] "CASADIMWPLCWYF"   "CASHIPRENTYATFYF"

If we want to generate nucleotide sequences instead of amino acids, we must to change the sequence.dictionary.

nucleotide.sequences <- generateSequences(number.of.sequences = 1000,
                                          min.length = 8,
                                          max.length = 16, 
                                          sequence.dictionary = c("A", "C", "T", "G"))
head(nucleotide.sequences)
## [1] "TGGTAGTG"         "TGTTGTTTGGGGTACG" "GACCCTCCTG"       "GGTCCCATGTCGCAT" 
## [5] "CAAGAATTAGGCTC"   "AGCTCGTGCTATCT"

2.2 variationalSequences

In addition to making random sequences with generateSequences(), we can also use generative deep learning to simulate similar, de novo sequences with variationalSequences(). variationalSequences() uses a variational autoencoder that allows for sampling and generation of sequences similar to the input sequences.

It should be noted that the success of this approach is highly dependent on the number of sequences used as input and the hyperparameters of the model. As such, variationalSequences() has a number of arguments to modify to allow for optimization.

Parameters for `variationalSequences()

  • input.sequences The amino acid or nucleotide sequences to use
  • encoder.function The method to prepare the sequencing information - “onehotEncoder” or “propertyEncoder”
  • aa.method.to.use The method or approach to use for the conversion, see propertyEncoder()
  • number.of.sequences Number of sequences to generate
  • encoder.hidden.dim A vector of the neurons to use in the hidden layers for the encoder portion of the model
  • decoder.hidden.dim A vector of the neurons to use in the hidden layers for the decoder portion of the model. If NULL assumes symmetric autoencoder
  • latent.dim The size of the latent dimensions
  • batch.size The batch size to use for VAE training
  • epochs The number of epochs to use in VAE training
  • learning.rate The learning rate to use in VAE training
  • epsilon.std The epsilon to use in VAE training
  • call.threshold The relative strictness of sequence calling with higher values being more stringent
  • activation.function The activation for the dense connected layers
  • optimizer The optimizer to use in VAE training
  • disable.eager.execution Disable the eager execution parameter for tensorflow.
  • sequence.dictionary The letters to use in sequence mutation (default are all amino acids)
variational.sequences <- variationalSequences(sequences, 
                                              encoder = "onehotEncoder",
                                              number.of.sequences = 100,
                                              encoder.hidden.dim = c(256, 128),
                                              latent.dim = 16,
                                              batch.size = 16, 
                                              call.threshold = 0.1)
head(variational.sequences)

2.3 mutateSequences

A common approach is to mutate sequences randomly or at specific intervals. This can be particularly helpful if we have fewer sequences or want to test a model for accuracy given new, altered sequences. mutateSequences() allows us to tune the type of mutation, where along the sequences to introduce the mutation and the overall number of mutations.

Parameters for mutateSequences()

  • input.sequences The amino acid or nucleotide sequences to use
  • n.sequences The number of mutated sequences to return per input.sequence
  • mutation.rate The rate of mutations introduced into sequences
  • position.start The starting position to mutate along the sequence. Default NULL will start the random mutations at position 1.
  • position.end The ending position to mutate along the sequence. Default NULL will end the random mutations at the last position.
  • sequence.dictionary The letters to use in sequence mutation (default are all amino acids)
mutated.sequences <- mutateSequences(sequences, 
                                     n.sequence = 1,
                                     position.start = 3,                                  
                                     position.end = 8)
head(sequences)
## [1] "CASTCTMLANRYF"    "CASFTKNEEETYF"    "CASDGSGVAHHYF"    "CASDILAYWYEYF"   
## [5] "CASADIMWPLCWYF"   "CASHIPRENTYATFYF"
head(mutated.sequences)
## [1] "CASTCTMAANRYF"    "CASTTKNEEETYF"    "CASDGSFVAHHYF"    "CARDILAYWYEYF"   
## [5] "CAMADIMWPLCWYF"   "CAKHIPRENTYATFYF"

2.4 formatGenes

Immune receptor nomenclature can be highly variable across sequencing platforms. When preparing data for models, we can use formatGenes() to universalize the gene formats into IMGT nomenclature.

Parameters for formatGenes()

  • input.data Data frame of sequencing data or scRepertoire outputs
  • region Sequence gene loci to access - ‘v’, ‘d’, ‘j’, ‘c’ or a combination using c(‘v’, ‘d’, ‘j’)
  • technology The sequencing technology employed - ‘TenX’, "Adaptive’, or ‘AIRR’
  • species One or two word designation of species. Currently supporting: “human”, “mouse”, “rat”, “rabbit”, “rhesus monkey”, “sheep”, “pig”, “platypus”, “alpaca”, “dog”, “chicken”, and “ferret”
  • simplify.format If applicable, remove the allelic designation (TRUE) or retain all information (FALSE)

Here, we will use the built-in example from Adaptive Biotechnologies and reformat and simplify the v region. formatGenes() will add 2 columns to the end of the data frame per region selected - 1) v_IMGT will be the formatted gene calls and 2) v_IMGT.check is a binary for if the formatted region appears in the IMGT database. In the example below, “TRBV2-1” is not recognized as a designation within IMGT.

data("immapex_example.data")
Adaptive_example <- formatGenes(immapex_example.data[["Adaptive"]],
                                region = "v",
                                technology = "Adaptive", 
                                simplify.format = TRUE) 

head(Adaptive_example[,c("aminoAcid","vGeneName", "v_IMGT", "v_IMGT.check")])
##              aminoAcid  vGeneName   v_IMGT v_IMGT.check
## 4490  CASSQDGPSGIETQYF TCRBV04-02  TRBV4-2            1
## 18266    CASSEGSNQPQHF TCRBV02-01  TRBV2-1            0
## 22061   CSASAGDMVTEAFF TCRBV20-01 TRBV20-1            1
## 22174  CASSQDPGETDTQYF TCRBV03-01  TRBV3-1            1
## 19117     CATSAWTGELFF TCRBV24-01 TRBV24-1            1
## 2659     CATSVPGQETQYF TCRBV24-01 TRBV24-1            1

2.5 getIMGT

Depending on the sequencing technology and the version, we might want to expand the length of our sequence embedding approach. The first step in the process is pulling the reference sequences from the ImMunoGeneTics (IMGT) system using getIMGT(). More information for IMGT can be found at imgt.org. Data from IMGT is under a CC BY-NC-ND 4.0 license. Please be aware that attribution is required for usage and should not be used to create commercial or derivative work.

Parameters for getIMGT()

  • species One or two word designation of species. Currently supporting: “human”, “mouse”, “rat”, “rabbit”, “rhesus monkey”, “sheep”, “pig”, “platypus”, “alpaca”, “dog”, “chicken”, and “ferret”
  • chain Sequence chain to access
  • frame Designation for “all”, “inframe” or “inframe+gap”
  • region Sequence gene loci to access
  • sequence.type Type of sequence - “aa” for amino acid or “nt” for nucleotide

Here, we will use the getIMGT() function to get the amino acid sequences for the TRBV region to get all the sequences by V gene allele.

TRBV_aa <- getIMGT(species = "human",
                   chain = "TRB",
                   frame = "inframe",
                   region = "v",
                   sequence.type = "aa") 

TRBV_aa[[1]][1]
## $`TRBV1*01`
## [1] "TRBVHPVREGIONAADTGITQTPKYLVTAMGSKRTMKREHLGHDSMYWYRQKAKKSLEFMFYYNCKEFIENKTVPNHFTPECPDSSRLYLHVVALQQEDSAAYLCTSSQ"

2.6 inferCDR

We can now use inferCDR() to add additional sequence elements to our example data using the outputs of formatGenes() and getIMGT(). Here, we will use the function to isolate the complementarity-determining regions (CDR) 1 and 2. If the gene nomenclature does not match the IMGT the result will be NA for the given sequences. Likewise, if the IMGT nomenclature has been simplified, the first allelic match will be used for sequence extraction.

Parameters for inferCDR

  • input.data Data frame of sequencing data or output from formatGenes().
  • reference IMGT sequences from getIMGT()
  • technology The sequencing technology employed - ‘TenX’, "Adaptive’, or ‘AIRR’,
  • sequence.type Type of sequence - “aa” for amino acid or “nt” for nucleotide
  • sequences The specific regions of the CDR loop to get from the data.
Adaptive_example <- inferCDR(Adaptive_example,
                             chain = "TRB", 
                             reference = TRBV_aa,
                             technology = "Adaptive", 
                             sequence.type = "aa",
                             sequences = c("CDR1", "CDR2"))

Adaptive_example[200:210,c("CDR1_IMGT", "CDR2_IMGT")]
##        CDR1_IMGT  CDR2_IMGT
## 200 IIEKRQSVAFWC QGPKLLIQFQ
## 201 IIEKRQSVAFWC QGPKLLIQFQ
## 202 IIEKRQSVAFWC QGPKLLIQFQ
## 203 IIEKRQSVAFWC QGPKLLIQFQ
## 204 IIEKRQSVAFWC QGPKLLIQFQ
## 205 IIEKRQSVAFWC QGPKLLIQFQ
## 206 IIEKRQSVAFWC QGPKLLIQFQ
## 207 IIEKRQSVAFWC QGPKLLIQFQ
## 208 IIEKRQSVAFWC QGPKLLIQFQ
## 209 IIEKRQSVAFWC QGPKLLIQFQ
## 210 IIEKRQSVAFWC QGPKLLIQFQ

3 Encoders

3.1 onehotEncoder

One hot encoding of amino acid or nucleotide sequences is a common method for transforming sequences into numeric matrices compatible with Keras3 (or other workflows).

Parameters for onehotEncoder()

  • input.sequences The amino acid or nucleotide sequences to use
  • max.length Additional length to pad, NULL will pad sequences to the max length of input.sequences
  • convert.to.matrix Return a matrix (TRUE) or a 3D array (FALSE)
  • sequence.dictionary The letters to use in encoding (default are all amino acids + NA value)
sequence.matrix <- onehotEncoder(input.sequences =  c(sequences, mutated.sequences), 
                                 convert.to.matrix = TRUE)
head(sequence.matrix[,1:20])
##      Pos.1_A Pos.1_R Pos.1_N Pos.1_D Pos.1_C Pos.1_Q Pos.1_E Pos.1_G Pos.1_H
## [1,]       0       0       0       0       1       0       0       0       0
## [2,]       0       0       0       0       1       0       0       0       0
## [3,]       0       0       0       0       1       0       0       0       0
## [4,]       0       0       0       0       1       0       0       0       0
## [5,]       0       0       0       0       1       0       0       0       0
## [6,]       0       0       0       0       1       0       0       0       0
##      Pos.1_I Pos.1_L Pos.1_K Pos.1_M Pos.1_F Pos.1_P Pos.1_S Pos.1_T Pos.1_W
## [1,]       0       0       0       0       0       0       0       0       0
## [2,]       0       0       0       0       0       0       0       0       0
## [3,]       0       0       0       0       0       0       0       0       0
## [4,]       0       0       0       0       0       0       0       0       0
## [5,]       0       0       0       0       0       0       0       0       0
## [6,]       0       0       0       0       0       0       0       0       0
##      Pos.1_Y Pos.1_V
## [1,]       0       0
## [2,]       0       0
## [3,]       0       0
## [4,]       0       0
## [5,]       0       0
## [6,]       0       0

3.2 propertyEncoder

An alternative to one hot encoding is transforming the sequences into an array/matrix of numerical values using amino acid properties.

These properties are largely based on dimensional reduction strategies, but it is essential to know the assumptions for each approach (links to original work below). Important to note: this encoding strategy is specific for amino acids.

method.to.use

property.matrix <- propertyEncoder(input.sequences =  c(sequences, mutated.sequences), 
                                   method.to.use = "FASGAI",
                                   convert.to.matrix = TRUE)

head(property.matrix[,1:20])
##       Pos.1_F1  Pos.1_F2   Pos.1_F3 Pos.1_F4 Pos.1_F5  Pos.1_F6  Pos.2_F1
## [1,] 0.8189626 0.6210147 0.06362416        0 0.063684 0.5042316 0.5475782
## [2,] 0.8189626 0.6210147 0.06362416        0 0.063684 0.5042316 0.5475782
## [3,] 0.8189626 0.6210147 0.06362416        0 0.063684 0.5042316 0.5475782
## [4,] 0.8189626 0.6210147 0.06362416        0 0.063684 0.5042316 0.5475782
## [5,] 0.8189626 0.6210147 0.06362416        0 0.063684 0.5042316 0.5475782
## [6,] 0.8189626 0.6210147 0.06362416        0 0.063684 0.5042316 0.5475782
##       Pos.2_F2  Pos.2_F3  Pos.2_F4  Pos.2_F5  Pos.2_F6  Pos.3_F1  Pos.3_F2
## [1,] 0.8428057 0.1736913 0.8702309 0.2374043 0.2587973 0.3064239 0.3803715
## [2,] 0.8428057 0.1736913 0.8702309 0.2374043 0.2587973 0.3064239 0.3803715
## [3,] 0.8428057 0.1736913 0.8702309 0.2374043 0.2587973 0.3064239 0.3803715
## [4,] 0.8428057 0.1736913 0.8702309 0.2374043 0.2587973 0.3064239 0.3803715
## [5,] 0.8428057 0.1736913 0.8702309 0.2374043 0.2587973 0.3064239 0.3803715
## [6,] 0.8428057 0.1736913 0.8702309 0.2374043 0.2587973 0.3064239 0.3803715
##       Pos.3_F3  Pos.3_F4  Pos.3_F5  Pos.3_F6   Pos.4_F1  Pos.4_F2
## [1,] 0.1548993 0.6681727 0.2317614 0.3772829 0.46547578 0.4904353
## [2,] 0.1548993 0.6681727 0.2317614 0.3772829 0.90484370 0.6964236
## [3,] 0.1548993 0.6681727 0.2317614 0.3772829 0.03057369 0.4920987
## [4,] 0.1548993 0.6681727 0.2317614 0.3772829 0.03057369 0.4920987
## [5,] 0.1548993 0.6681727 0.2317614 0.3772829 0.54757815 0.8428057
## [6,] 0.1548993 0.6681727 0.2317614 0.3772829 0.38371694 0.7429997

propertyEncoder() also allows us to use multiple approaches simultaneously by setting method.to.use as a vector.

mulit.property.matrix <- propertyEncoder(input.sequences =  c(sequences, mutated.sequences), 
                                         method.to.use = c("atchleyFactors", "kideraFactors"),
                                         convert.to.matrix = TRUE)

head(mulit.property.matrix[,1:20])
##      Pos.1_AF1 Pos.1_AF2 Pos.1_AF3 Pos.1_AF4 Pos.1_AF5 Pos.1_KF1 Pos.1_KF2
## [1,]         0  0.551818 0.4960678 0.2994783 0.4864792 0.4640884 0.2635468
## [2,]         0  0.551818 0.4960678 0.2994783 0.4864792 0.4640884 0.2635468
## [3,]         0  0.551818 0.4960678 0.2994783 0.4864792 0.4640884 0.2635468
## [4,]         0  0.551818 0.4960678 0.2994783 0.4864792 0.4640884 0.2635468
## [5,]         0  0.551818 0.4960678 0.2994783 0.4864792 0.4640884 0.2635468
## [6,]         0  0.551818 0.4960678 0.2994783 0.4864792 0.4640884 0.2635468
##      Pos.1_KF3 Pos.1_KF4 Pos.1_KF5 Pos.1_KF6 Pos.1_KF7 Pos.1_KF8 Pos.1_KF9
## [1,] 0.5643836 0.1511628 0.2675676         1         1 0.3454936 0.8553616
## [2,] 0.5643836 0.1511628 0.2675676         1         1 0.3454936 0.8553616
## [3,] 0.5643836 0.1511628 0.2675676         1         1 0.3454936 0.8553616
## [4,] 0.5643836 0.1511628 0.2675676         1         1 0.3454936 0.8553616
## [5,] 0.5643836 0.1511628 0.2675676         1         1 0.3454936 0.8553616
## [6,] 0.5643836 0.1511628 0.2675676         1         1 0.3454936 0.8553616
##      Pos.1_KF10 Pos.2_AF1  Pos.2_AF2 Pos.2_AF3 Pos.2_AF4 Pos.2_AF5
## [1,]  0.8661616 0.2366665 0.06143816 0.5124824         1 0.5043415
## [2,]  0.8661616 0.2366665 0.06143816 0.5124824         1 0.5043415
## [3,]  0.8661616 0.2366665 0.06143816 0.5124824         1 0.5043415
## [4,]  0.8661616 0.2366665 0.06143816 0.5124824         1 0.5043415
## [5,]  0.8661616 0.2366665 0.06143816 0.5124824         1 0.5043415
## [6,]  0.8661616 0.2366665 0.06143816 0.5124824         1 0.5043415

If, instead, we would like to get the set of summarized values across all amino acid residues for a given method.to.use, we can use summary.function and select “median”, “mean”, “sum”, variance (“vars”), or Median Absolute Deviation (“mads”).

median.property.matrix <- propertyEncoder(input.sequences =  c(sequences, mutated.sequences), 
                                          method.to.use = "crucianiProperties",
                                          summary.function = "median")

head(median.property.matrix[,1:3])
##         PP1    PP2    PP3
## [1,] 0.1575 0.1975 0.5525
## [2,] 0.6775 0.2225 0.3050
## [3,] 0.0675 0.1050 0.6250
## [4,] 0.1500 0.2475 0.3900
## [5,] 0.0925 0.2825 0.4050
## [6,] 0.6550 0.2825 0.5525

3.3 geometricEncoder

One approach to encoding amino acid sequences is geometric isometry, such as GIANA.

Parameters for geometricEncoder()

  • method.to.use Select the following substitution matrices: “BLOSUM45”, “BLOSUM50”, “BLOSUM62”, “BLOSUM80”, “BLOSUM100”, “PAM30”, “PAM40”, “PAM70”, “PAM120”, or “PAM250”
  • theta The angle in which to create the rotation matrix
geometric.matrix <- geometricEncoder(sequences, 
                                     method.to.use = "BLOSUM62",
                                     theta = pi/3)
head(geometric.matrix)
##            [,1]        [,2]       [,3]        [,4]       [,5]       [,6]
## [1,] -0.9326427 -0.53846154 -2.2320508 -0.13397460 -0.8838755 -0.7767751
## [2,] -1.1352562 -0.03367863 -0.8969426  0.01508865 -1.0920117  0.9683429
## [3,] -1.3989641 -0.80769231 -1.3172581  0.12771185 -1.4992601  0.2891023
## [4,] -1.9346642 -0.49521709 -2.3886584  0.75266228 -1.4889543  0.1174061
## [5,] -2.1057687 -0.63841587 -2.9010526  0.88191339 -1.3608971 -0.7857143
## [6,] -1.1930286 -0.18361389 -1.7906647 -0.02347777 -1.4597754  0.5284052
##            [,7]        [,8]      [,9]      [,10]     [,11]       [,12]
## [1,] -2.5115873  0.50404299 -1.491716  0.7375736 -1.373570 -0.08244591
## [2,] -1.5603546 -0.98969426 -1.850197 -0.1799805 -1.207396  1.16819488
## [3,] -0.9100098  0.80695239 -1.465581 -0.8461538 -2.227268  0.93466424
## [4,] -2.5191316  0.05557168 -1.194329  0.3763311 -1.888658 -0.11336312
## [5,] -2.8557687  0.66062224 -1.635165  1.1179025 -2.027335 -0.34569614
## [6,] -2.2091742 -0.04859801 -1.270032 -0.3002405 -1.684655  0.54290834
##           [,13]       [,14]      [,15]    [,16]      [,17]      [,18]
## [1,] -0.8866369 -0.15660757 -1.1050789 1.760207 -1.5218931 -1.0563116
## [2,] -1.2430965  0.61464470 -0.8564596 1.637278 -1.5988161 -0.9230769
## [3,] -1.5583331  0.69911210 -0.8949211 1.703895 -2.1935893 -0.2005919
## [4,] -0.2513807  0.74309646 -1.8584811 1.680522 -0.8715482  0.7403351
## [5,] -0.5497252  0.09500907 -1.6708789 1.179761 -0.6237179  0.7945968
## [6,] -0.9330127  0.61602540 -1.0518829 1.196915 -1.6405445 -0.6584936
##           [,19]      [,20]
## [1,] -1.0507888  0.2815580
## [2,] -1.4017255 -0.1875248
## [3,] -1.4298813 -0.2926037
## [4,] -0.3097138 -1.1558676
## [5,] -0.9208789 -0.1192766
## [6,] -0.9201520 -0.5312500

3.4 tokenizeSequences

Another approach to transforming a sequence into numerical values is tokenizing it into numbers. This is a common approach for recurrent neural networks where one letter corresponds to a single integer. In addition, we can add start and stop tokens to our original sequences to differentiate between the beginning and end of the sequences.

Parameters for tokenizeSequences()

  • add.startstop Add start and stop tokens to the sequence
  • start.token The character to use for the start token
  • stop.token The character to use for the stop token
  • max.length Additional length to pad, NULL will pad sequences to the max length of input.sequences
  • convert.to.matrix Return a matrix (TRUE) or a vector (FALSE)
token.matrix <- tokenizeSequences(input.sequences =  c(sequences, mutated.sequences), 
                                  add.startstop = TRUE,
                                  start.token = "!",
                                  stop.token = "^", 
                                  convert.to.matrix = TRUE)
head(token.matrix[,1:18])
##                  [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## CASTCTMLANRYF       1    6    2   17   18    6   18   14   12     2     4     3
## CASFTKNEEETYF       1    6    2   17   15   18   13    4    8     8     8    18
## CASDGSGVAHHYF       1    6    2   17    5    9   17    9   21     2    10    10
## CASDILAYWYEYF       1    6    2   17    5   11   12    2   20    19    20     8
## CASADIMWPLCWYF      1    6    2   17    2    5   11   14   19    16    12     6
## CASHIPRENTYATFYF    1    6    2   17   10   11   16    3    8     4    18    20
##                  [,13] [,14] [,15] [,16] [,17] [,18]
## CASTCTMLANRYF       20    15    22    23    23    23
## CASFTKNEEETYF       20    15    22    23    23    23
## CASDGSGVAHHYF       20    15    22    23    23    23
## CASDILAYWYEYF       20    15    22    23    23    23
## CASADIMWPLCWYF      19    20    15    22    23    23
## CASHIPRENTYATFYF     2    18    15    20    15    22

3.5 probabilityMatrix

Another method for encoding a group of sequences is to calculate the positional probability of sequences using probabilityMatrixs(). This function could represent a collection of antigen-specific sequences or even work on embedding a total repertoire.

ppm.matrix <- probabilityMatrix(sequences)
head(ppm.matrix)
##   Pos.1 Pos.2 Pos.3 Pos.4 Pos.5 Pos.6 Pos.7 Pos.8 Pos.9 Pos.10 Pos.11 Pos.12
## A     0     1     0 0.055 0.063 0.054 0.041 0.042 0.051  0.059  0.060  0.044
## R     0     0     0 0.050 0.053 0.045 0.044 0.059 0.058  0.052  0.057  0.035
## N     0     0     0 0.057 0.058 0.043 0.054 0.050 0.044  0.065  0.046  0.029
## D     0     0     0 0.062 0.057 0.049 0.056 0.055 0.054  0.049  0.054  0.045
## C     1     0     0 0.048 0.042 0.054 0.056 0.049 0.050  0.035  0.050  0.042
## Q     0     0     0 0.051 0.049 0.057 0.046 0.050 0.056  0.049  0.048  0.030
##   Pos.13 Pos.14 Pos.15 Pos.16
## A  0.023  0.011      0      0
## R  0.022  0.013      0      0
## N  0.027  0.014      0      0
## D  0.020  0.014      0      0
## C  0.025  0.014      0      0
## Q  0.020  0.013      0      0

In addition, probabilityMatrix() can convert the positional probability matrix into a positional weight matrix using log-likelihood using the argument convert.PWM = TRUE. We can provide a set of background frequencies for the amino acids with background.frequencies or leave this blank to assume a uniform distribution for all amino acids. Here, we are going to use an example background.

set.seed(42)
back.freq <- sample(1:1000, 20)
back.freq <- back.freq/sum(back.freq)

pwm.matrix <- probabilityMatrix(sequences,
                                max.length = 20,
                                convert.PWM = TRUE,
                                background.frequencies = back.freq)
head(pwm.matrix)
##       Pos.1     Pos.2     Pos.3      Pos.4      Pos.5      Pos.6      Pos.7
## A -6.157338  3.809888 -6.157338 -0.3499835 -0.1573384 -0.3759787 -0.7650210
## R -6.986931 -6.986931 -6.986931 -1.3145058 -1.2320437 -1.4633692 -1.4950781
## N -5.351911 -5.351911 -5.351911  0.5060700  0.5307321  0.1075207  0.4294488
## D -4.282869 -4.282869 -4.282869  1.6944106  1.5751117  1.3609869  1.5500207
## C  6.732291 -3.234935 -3.234935  2.3797750  2.1913299  2.5464249  2.5979552
## Q -4.858371 -4.858371 -4.858371  0.8420682  0.7854847  0.9996095  0.6962174
##        Pos.8      Pos.9     Pos.10     Pos.11      Pos.12     Pos.13     Pos.14
## A -0.7310737 -0.4568987 -0.2504478 -0.2266011 -0.66548534 -1.5723759 -2.5723759
## R -1.0800406 -1.1042881 -1.2590107 -1.1289502 -1.81700617 -2.4633692 -3.1795762
## N  0.3205144  0.1399421  0.6924832  0.2026779 -0.44502037 -0.5445560 -1.4450204
## D  1.5244856  1.4984904  1.3609869  1.4984904  1.24069264  0.1094481 -0.3759787
## C  2.4089214  2.4374905  1.9349902  2.4374905  2.19132992  1.4655049  0.6719558
## Q  0.8140539  0.9745185  0.7854847  0.7563384  0.09582482 -0.4660541 -1.0510166
##      Pos.15    Pos.16    Pos.17    Pos.18    Pos.19    Pos.20
## A -6.157338 -6.157338 -6.157338 -6.157338 -6.157338 -6.157338
## R -6.986931 -6.986931 -6.986931 -6.986931 -6.986931 -6.986931
## N -5.351911 -5.351911 -5.351911 -5.351911 -5.351911 -5.351911
## D -4.282869 -4.282869 -4.282869 -4.282869 -4.282869 -4.282869
## C -3.234935 -3.234935 -3.234935 -3.234935 -3.234935 -3.234935
## Q -4.858371 -4.858371 -4.858371 -4.858371 -4.858371 -4.858371

3.6 adjacencyMatrix

Similar to the positional probability, we can also summarize a given set of sequences by the frequency of adjacency for a given set of amino acid or nucleotide residues using adjacencyMatrix(). For this function, a matrix of n x n (defined by the length of sequence.dictionary) is created and the number of times a residue is adjacent to one another is calculated. We can normalize the values using the total number of residues evaluated.

adj.matrix <- adjacencyMatrix(sequences, 
                              normalize = FALSE)
adj.matrix
##      A  R   N   D    C  Q   E   G  H  I  L   K  M    F   P    S   T   W    Y  V
## A   34 56  40  37 1052 51  47  51 48 47 39  50 42   38  47 1089  37  49  113 39
## R   56 56  54  52   39 36  34  36 42 42 52  41 41   28  50   97  50  39   90 41
## N   40 54  44  48   37 52  45  48 31 40 43  42 43   34  44  100  49  50   92 38
## D   37 52  48  34   36 50  47  47 40 41 44  46 36   41  42  116  61  45  110 57
## C 1052 39  37  36   44 43  46  41 40 40 49  48 38   32  44   87  42  39   84 49
## Q   51 36  52  50   43 34  47  43 48 48 38  42 38   31  43   96  34  43   77 44
## E   47 34  45  47   46 47  52  48 38 41 37  33 44   36  41   92  50  45  111 36
## G   51 36  48  47   41 43  48  42 38 32 30  42 50   37  49  102  40  57   80 29
## H   48 42  31  40   40 48  38  38 28 39 42  48 35   45  47   99  52  34   72 46
## I   47 42  40  41   40 48  41  32 39 44 39  40 43   35  43   71  32  49   90 38
## L   39 52  43  44   49 38  37  30 42 39 36  43 36   39  47   82  42  51   97 36
## K   50 41  42  46   48 42  33  42 48 40 43  38 38   45  36   82  40  42  100 40
## M   42 41  43  36   38 38  44  50 35 43 36  38 38   32  35   86  40  40   78 45
## F   38 28  34  41   32 31  36  37 45 35 39  45 32   34  40   78  41  32 1082 34
## P   47 50  44  42   44 43  41  49 47 43 47  36 35   40  52  113  38  47  110 34
## S 1089 97 100 116   87 96  92 102 99 71 82  82 86   78 113  166  88  88  131 95
## T   37 50  49  61   42 34  50  40 52 32 42  40 40   41  38   88  50  43  106 39
## W   49 39  50  45   39 43  45  57 34 49 51  42 40   32  47   88  43  56  105 36
## Y  113 90  92 110   84 77 111  80 72 90 97 100 78 1082 110  131 106 105  146 66
## V   39 41  38  57   49 44  36  29 46 38 36  40 45   34  34   95  39  36   66 38

4 Extracting Sequences

4.1 sequenceDecoder

We have a function called sequenceDecoder() that extracts sequences from one-hot or property-encoded matrices or arrays. This function can be applied to any generative approach to sequence generation.

Parameters for sequenceDecoder()

  • sequence.matrix The encoded sequences to decode in an array or matrix
  • encoder The method to prepare the sequencing information - “onehotEncoder” or “propertyEncoder”
  • aa.method.to.use The method or approach to use for the conversion corresponding to the input to propertyEncoder(). This will be ignored if encoder = “onehotEncoder”
  • call.threshold The relative strictness of sequence calling with higher values being more stringent
property.matrix <- propertyEncoder(input.sequences =  c(sequences, mutated.sequences), 
                                   method.to.use = "FASGAI",
                                   convert.to.matrix = TRUE)

property.sequences <- sequenceDecoder(property.matrix,
                                      encoder = "propertyEncoder",
                                      aa.method.to.use = "FASGAI",
                                      call.threshold = 1)
head(sequences)
## [1] "CASTCTMLANRYF"    "CASFTKNEEETYF"    "CASDGSGVAHHYF"    "CASDILAYWYEYF"   
## [5] "CASADIMWPLCWYF"   "CASHIPRENTYATFYF"
head(property.sequences)
## [1] "CASTCTMLANRYF"    "CASFTKNEEETYF"    "CASDGSGVAHHYF"    "CASDILAYWYEYF"   
## [5] "CASADIMWPLCWYF"   "CASHIPRENTYATFYF"

A similar approach can be applied when using matrices or arrays derived from one-hot encoding:

sequence.matrix <- onehotEncoder(input.sequences =  c(sequences, mutated.sequences), 
                                 convert.to.matrix = TRUE)

OHE.sequences <- sequenceDecoder(sequence.matrix,
                                 encoder = "onehotEncoder")

head(OHE.sequences)
## [1] "CASTCTMLANRYF"    "CASFTKNEEETYF"    "CASDGSGVAHHYF"    "CASDILAYWYEYF"   
## [5] "CASADIMWPLCWYF"   "CASHIPRENTYATFYF"

5 Training a Model

5.1 Autoencoder

For the vignette - we will use an autoencoder for sequence embedding. The code below is based on the Trex R package. The overall structure of the autoencoder is the same. However, some of the parameters are modified for the sake of the vignette. We will use the sequence.matrix we generated above from the onehotEncoder().

The steps to train the model include:

  1. Subsetting sequences
  2. Defining parameters for the model
  3. Forming the autoencoder structure - encoder and decoder
  4. Fitting the model
#Sampling to make Training/Validation Data Cohorts
set.seed(42)
num_sequences <- nrow(sequence.matrix)
indices <- 1:num_sequences
train_indices <- sample(indices, size = floor(0.8 * num_sequences))
val_indices <- setdiff(indices, train_indices)
    
x_train <- sequence.matrix[train_indices,]
x_val <- sequence.matrix[val_indices,]
   
# Parameters
input_shape <- dim(x_train)[2]
epochs <- 20
batch_size <- 128
encoding_dim <- 40 
hidden_dim1 <- 256 # Hidden layer 1 size
hidden_dim2 <- 128  # Hidden layer 2 size
    
es <- callback_early_stopping(monitor = "val_loss",
                              min_delta = 0,
                              patience = 4,
                              verbose = 1,
                              mode = "min")
                    
# Define the Model
input_seq <- layer_input(shape = c(input_shape))
        
# Encoder Layers
encoded <- input_seq %>%
          layer_dense(units = hidden_dim1, name = "e.1") %>%
          layer_batch_normalization(name = "bn.1") %>%
          layer_activation('leaky_relu', name = "act.1") %>%
          layer_dense(units = hidden_dim2, name = "e.2") %>%
          layer_batch_normalization(name = "bn.2") %>%
          layer_activation('leaky_relu', name = "act.2") %>%
          layer_dense(units = encoding_dim, activation = 'selu', name = "latent")
                
# Decoder Layers
decoded <- encoded %>%
          layer_dense(units = hidden_dim2, name = "d.2") %>%
          layer_batch_normalization(name = "bn.3") %>%
          layer_activation('leaky_relu', name = "act.3") %>%
          layer_dense(units = hidden_dim1, name = "d.1") %>%
          layer_batch_normalization(name = "bn.4") %>%
          layer_activation('leaky_relu', name = "act.4") %>%
          layer_dense(units = input_shape, activation = 'sigmoid')
      
# Autoencoder Model
autoencoder <- keras_model(input_seq, decoded)
autoencoder %>% keras3::compile(optimizer = optimizer_adam(learning_rate = 0.0001),
                                   loss = "mse")
      
# Train the model
history <- autoencoder %>% fit(x = x_train,
                               y = x_train,
                               validation_data = list(x_val, x_val),
                               epochs = epochs,
                               batch_size = batch_size,
                               shuffle = TRUE,
                               callbacks = es, 
                               verbose = 0)

plot(history) + 
  scale_color_viridis(option = "B", discrete = TRUE) + 
  scale_fill_manual(values = c("black","black")) + 
  theme_classic()

5.2 Classifier

We can also build classifiers directly using deep or shallow neural networks. Building deep classifiers requires more data than classical machine learning methods, like random forests, so the vignette may not be ideal.

The first step is to generate distinct types of sequences using generateSequences() and onehotEncoder() to prepare the data for the model.

class1.sequences <- generateSequences(prefix.motif = "CAS",
                                      suffix.motif = "YF",
                                      number.of.sequences = 10000,
                                      min.length = 8,
                                      max.length = 16)

class2.sequences <- generateSequences(prefix.motif = "CASF",
                                      suffix.motif = "YF",
                                      number.of.sequences = 10000,
                                      min.length = 8,
                                      max.length = 16)

labels <- as.numeric(c(rep(0, 10000), rep(1, 10000)))

classifier.matrix <- onehotEncoder(input.sequences =  c(class1.sequences, class2.sequences), 
                                   convert.to.matrix = TRUE)

Next, we will define and train the Keras3 classifier model using artificial sequences. We will use a simple convolutional neural network with 2 layers and then a single neuron that will classify the sequences into class 1 or class 2 (here, the labels are 0 and 1).

#Input shape will be 1D as we are using a matrix
input.shape <- dim(classifier.matrix)[2]

#Simple model structure
classifier.model <- keras_model_sequential() %>% 
                        layer_dense(units = 128, activation = "relu", 
                                    input_shape = c(input.shape)) %>%
                        layer_dense(units = 32, activation = "relu") %>%
                        layer_dense(units = 1, activation = "sigmoid")

classifier.model %>% compile(
        optimizer = optimizer_adam(learning_rate = 0.00001),
        loss = "binary_crossentropy",
        metrics = c("accuracy")
)

#Separating data and labels
set.seed(42)
val_indices <- sample(nrow(classifier.matrix), 10000*0.2)
x_val <- classifier.matrix[val_indices,]
x_train <- classifier.matrix[-val_indices,]

val_labels <- labels[val_indices]
train_labels <- labels[-val_indices]

#Training the classifier.model
history <- classifier.model %>% fit(x_train, 
                                    train_labels, 
                                    epochs = 20, 
                                    batch_size = 32, 
                                    validation_data = list(x_val, val_labels),
                                    verbose = 0
)

plot(history) + 
  scale_color_viridis(option = "B", discrete = TRUE) + 
  scale_fill_manual(values = c("black","black")) + 
  theme_classic()

Here, we can achieve a validation accuracy of 98.25%, which is impressive. But to contextualize, we used generateSequences() and distinct motifs - “CAS” vs “CASF” to create our 2 classes of sequences. Using sequences from experimental data will likely result in lower accuracy or require greater model complexity.


6 Conclusion

This has been a general overview of the capabilities of immApex for processing immune receptor sequences and making deep learning models. If you have any questions, comments, or suggestions, feel free to visit the GitHub repository.

6.1 Session Info

sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
## 
## Matrix products: default
## BLAS:   /media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] magrittr_2.0.3    viridis_0.6.5     viridisLite_0.4.2 ggplot2_3.5.1    
## [5] keras3_1.2.0      immApex_1.0.4     BiocStyle_2.34.0 
## 
## loaded via a namespace (and not attached):
##  [1] SummarizedExperiment_1.36.0 gtable_0.3.6               
##  [3] xfun_0.49                   bslib_0.8.0                
##  [5] websocket_1.4.2             processx_3.8.4             
##  [7] Biobase_2.66.0              lattice_0.22-6             
##  [9] vctrs_0.6.5                 tools_4.4.1                
## [11] tfruns_1.5.3                ps_1.8.1                   
## [13] generics_0.1.3              curl_6.0.0                 
## [15] stats4_4.4.1                fansi_1.0.6                
## [17] tibble_3.2.1                pkgconfig_2.0.3            
## [19] Matrix_1.7-1                S4Vectors_0.44.0           
## [21] lifecycle_1.0.4             GenomeInfoDbData_1.2.13    
## [23] compiler_4.4.1              stringr_1.5.1              
## [25] munsell_0.5.1               chromote_0.3.1             
## [27] GenomeInfoDb_1.42.0         htmltools_0.5.8.1          
## [29] sass_0.4.9                  hash_2.2.6.3               
## [31] yaml_2.3.10                 pillar_1.9.0               
## [33] later_1.3.2                 crayon_1.5.3               
## [35] jquerylib_0.1.4             whisker_0.4.1              
## [37] SingleCellExperiment_1.28.0 DelayedArray_0.32.0        
## [39] cachem_1.1.0                abind_1.4-8                
## [41] tidyselect_1.2.1            rvest_1.0.4                
## [43] digest_0.6.37               stringi_1.8.4              
## [45] dplyr_1.1.4                 bookdown_0.41              
## [47] rprojroot_2.0.4             fastmap_1.2.0              
## [49] grid_4.4.1                  here_1.0.1                 
## [51] colorspace_2.1-1            cli_3.6.3                  
## [53] SparseArray_1.6.0           S4Arrays_1.6.0             
## [55] base64enc_0.1-3             utf8_1.2.4                 
## [57] withr_3.0.2                 rappdirs_0.3.3             
## [59] scales_1.3.0                UCSC.utils_1.2.0           
## [61] promises_1.3.0              rmarkdown_2.29             
## [63] XVector_0.46.0              httr_1.4.7                 
## [65] matrixStats_1.4.1           gridExtra_2.3              
## [67] reticulate_1.39.0           png_0.1-8                  
## [69] evaluate_1.0.1              knitr_1.48                 
## [71] GenomicRanges_1.58.0        IRanges_2.40.0             
## [73] rlang_1.1.4                 Rcpp_1.0.13-1              
## [75] zeallot_0.1.0               glue_1.8.0                 
## [77] selectr_0.4-2               BiocManager_1.30.25        
## [79] xml2_1.3.6                  BiocGenerics_0.52.0        
## [81] jsonlite_1.8.9              R6_2.5.1                   
## [83] MatrixGenerics_1.18.0       zlibbioc_1.52.0            
## [85] tensorflow_2.16.0