Package 'CARDspa'

April 1, 2025

Title Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics

Version 0.99.8 **Date** 2025-2-6

Description CARD is a reference-based deconvolution method that estimates cell type composition in spatial transcriptomics based on cell type specific expression information obtained from a reference scRNA-seq data. A key feature of CARD is its ability to accommodate spatial correlation in the cell type composition across tissue locations, enabling accurate and spatially informed cell type deconvolution as well as refined spatial map construction. CARD relies on an efficient optimization algorithm for constrained maximum likelihood estimation and is scalable to spatial transcriptomics with tens of thousands of spatial locations and tens of thousands of genes.

License GPL-3 + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Depends R (>= 4.3.0)

Imports Rcpp (>= 1.0.7),RcppArmadillo, SummarizedExperiment, methods, MCMCpack, fields, wrMisc, concaveman, sp, dplyr, sf, Matrix, RANN, ggplot2, reshape2, RColorBrewer, S4Vectors, scatterpie, grDevices,ggcorrplot, stats, nnls, BiocParallel, RcppML, NMF, spatstat.random, gtools, SingleCellExperiment, SpatialExperiment

LazyData false

biocViews Spatial, SingleCell, Transcriptomics, Visualization

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown, testthat, BiocStyle

VignetteBuilder knitr

URL https://github.com/YMa-lab/CARDspa

2 Contents

BugReports https://github.com/YMa-lab/CARDspa/issues
git_url https://git.bioconductor.org/packages/CARDspa
git_branch devel
git_last_commit 97e9e57
git_last_commit_date 2025-03-27
Repository Bioconductor 3.21
Date/Publication 2025-04-01
Author Ying Ma [aut], Jing Fu [cre]
Maintainer Jing Fu <jing_fu@brown.edu></jing_fu@brown.edu>

Contents

assign_sc_cords
CARD-class
CARDfree
CARDfree-class
CARDref
CARD_deconvolution
CARD_imputation
CARD_refFree
CARD_scmapping
CARD_visualize_Cor
CARD_visualize_gene
CARD_visualize_pie
CARD_visualize_prop
CARD_visualize_prop_2CT
createCARDfreeObject
createCARDObject
create_ref
get_high_res_cords
get_weight_for_cell
markerList
mvn_cv
norm_coords_train_test
sample_grid_within
sc_count
sc_meta
sc_QC
select_info
show,CARD-method
show,CARDfree-method
Sigma
spatial_count
spatial_location

assign_sc_cords 3

Index 30

assign_sc_cords	ion to assign the spatial location information for each single
-----------------	--

Description

The function to assign the spatial location information for each single cell

Usage

```
assign_sc_cords(mappint_spot_cell_cor, cords_new, numcell, sc_eset, ct_varname)
```

Arguments

mappint_spot_cell_cor		
		a mapped correlation matrix indicating the relashionship between each measured spatial location and the single cell in the scRNAseq reference
	cords_new	output from the function get_high_res_cords
	numcell	a numeric value indicating the number of single cells in each measured location, we suggest 20 for ST technology, 7 for 10x Viisum and 2 for Slide-seq
	sc_eset	a single cell experiment object stored in CARD object

character, the name of the column in metaData that specifies the cell type annotation information, stroed in CARD object

Value

ct_varname

Return the assigned spatial location information for the mapped single cell

CADD along	Each CARD object has a number of alots which stone information. Von
CARD-class	Each CARD object has a number of slots which store information. Key
	slots to access are listed below.

Description

Each CARD object has a number of slots which store information. Key slots to access are listed below.

Value

Return an object of CARD class

4 CARDfree

Slots

sc_eset The filtered scRNA-seq data along with meta data stored in the format of SingleCellExperiment.

spatial_countMat The filtered spatial count data.

spatial_location The weights for combining p-values from multiple kernels.

Proportion_CARD The estimated cell type proportion by CARD with each row is a spatial location and each column is a cell type.

project The name of the project, default is deconvolution.

info_parameters The paramters that are used in model fitting.

algorithm_matrix The intermediate matrices that are used in the model fitting step.

refined_prop The refined cell type proportion matrix estimated by CARD for the newly grided spatial locations. The number of initial grids are defined by the user.

refined_expression The refined predicted expression matrix (normalized) estimated by CARD for the newly grided spatial locations. The number of initial grids are defined by the user.

CARDfree

SpatialDeconv function based on Conditional Autoregressive model

Description

SpatialDeconv function based on Conditional Autoregressive model

Usage

```
CARDfree(
   XinputIn,
   UIn,
   WIn,
   phiIn,
   max_iterIn,
   epsilonIn,
   initV,
   initb,
   initSigma_e2,
   initLambda
)
```

Arguments

XinputIn The input of normalized spatial data

UIn The input of cell type specific basis matrix B

WIn The constructed W weight matrix from Gaussian kernel

phiIn The phi value

CARDfree-class 5

max_iterIn Maximum iterations
epsilonIn epsilon for convergence

initV Initial matrix of cell type compositions V
initb Initial vector of cell type specific intercept

initSigma_e2 Initial value of residual variance

initLambda Initial vector of cell type sepcific scalar.

Value

A list

CARDfree-class Each CARDfree object has a number of slots which store information.

Key slots to access are listed below.

Description

Each CARDfree object has a number of slots which store information. Key slots to access are listed below.

Value

Return an object of CARDfree class

Slots

spatial_countMat The filtered spatial count data.

spatial_location The weights for combining p-values from multiple kernels.

Proportion_CARD The estimated cell type proportion by CARD with each row is a spatial location and each column is a cell type.

estimated_refMatrix The estimated reference matrix by CARDfree with each row represents a gene and each column represents a cell type cluster.

project The name of the project, default is deconvolution.

markerList The nlist of cell type specific markers, with each element represents the vector of cell type specific markers

info_parameters The paramters that are used in model fitting.

algorithm_matrix The intermediate matrices that are used in the model fitting step.

refined_prop The refined cell type proportion matrix estimated by CARD for the newly grided spatial locations. The number of initial grids are defined by the user.

refined_expression The refined predicted expression matrix (normalized) estimated by CARD for the newly grided spatial locations. The number of initial grids are defined by the user.

6 CARDref

CARDref

SpatialDeconv function based on Conditional Autoregressive model

Description

SpatialDeconv function based on Conditional Autoregressive model

Usage

```
CARDref(
   XinputIn,
   UIn,
   WIn,
   phiIn,
   max_iterIn,
   epsilonIn,
   initV,
   initb,
   initSigma_e2,
   initLambda
)
```

Arguments

XinputIn The input of normalized spatial data

UIn The input of cell type specific basis matrix B

WIn The constructed W weight matrix from Gaussian kernel

phiIn The phi value

max_iterIn Maximum iterations
epsilonIn epsilon for convergence

initV Initial matrix of cell type compositions V initb Initial vector of cell type specific intercept

initSigma_e2 Initial value of residual variance

initLambda Initial vector of cell type sepcific scalar.

Value

A list

CARD_deconvolution 7

 ${\it CARD_deconvolution} \qquad {\it Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics by CARD}$

Description

Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics by CARD

Usage

```
CARD_deconvolution(
   sc_count,
   sc_meta,
   spatial_count,
   spatial_location,
   ct_varname,
   ct_select,
   sample_varname,
   mincountgene = 100,
   mincountspot = 5,
   sce = NULL,
   spe = NULL
)
```

Arguments

sc_count	Raw scRNA-seq count data, each column is a cell and each row is a gene.
sc_meta	data frame, with each row representing the cell type and/or sample information of a specific cell. The row names of this data frame should match exactly with the column names of the sc_count data
spatial_count	Raw spatial resolved transcriptomics data, each column is a spatial location, and each row is a gene.
spatial_location	on
	data frame, with two columns representing the x and y coordinates of the spatial location. The rownames of this data frame should match eaxctly with the columns of the spatial_count.
ct_varname	character, the name of the column in metaData that specifies the cell type annotation information
ct_select	vector of cell type names that you are interested in to deconvolute, default as NULL. If NULL, then use all cell types provided by single cell dataset;
sample_varname	character,the name of the column in metaData that specifies the sample information. If NULL, we just use the whole as one sample.
mincountgene	Minimum counts for each gene
mincountspot	Minimum counts for each spatial location

8 CARD_imputation

sce	a SingleCellExperiment object containing scRNA-seq count data in the counts assay, and cell types and sample information in the colData.
spe	a SpatialExperiment object containing spatial data in the counts assay, and spatial coordinates in the spatialCoords.

Value

Returns a SpatialExperiment object with estimated cell type proportion stored in object\$Proportion_CARD.

Examples

```
library(RcppML)
library(NMF)
library(RcppArmadillo)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
)
```

CARD_imputation

Construct an enhanced spatial expression map on the unmeasured tissue locations

Description

Construct an enhanced spatial expression map on the unmeasured tissue locations

Usage

```
CARD_imputation(CARD_object, num_grids, ineibor = 10, exclude = NULL)
```

Arguments

CARD_object SpatialExperiment Object created by CARD_deconvolution with estimated cell

type compositions on the original spatial resolved transcriptomics data.

num_grids Initial number of newly grided spatial locations. The final number of newly

grided spatial locations will be lower than this value since the newly grided

locations outside the shape of the tissue will be filtered

CARD_refFree 9

ineibor Numeric, number of neighbors used in the imputation on newly grided spatial

locations, default is 10.

exclude Vector, the rownames of spatial location data on the original resolution that you

want to exclude. This is to avoid the weird detection of the shape.

Value

Return a SpatialExperiment object with the refined cell type compositions estimated for newly grided spots and the refined predicted gene expression (normalized).

Examples

```
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
   mincountgene = 100,
   mincountspot = 5
CARD_obj <- CARD_imputation(</pre>
    CARD_obj,
    num_grids = 200,
    ineibor = 10,
    exclude = NULL
)
```

CARD_refFree

Extension of CARD into a reference-free version of deconvolution: CARDfree.

Description

Extension of CARD into a reference-free version of deconvolution: CARDfree.

Usage

```
CARD_refFree(
  markerlist,
  spatial_count,
  spatial_location,
```

10 CARD_refFree

```
mincountgene = 100,
mincountspot = 5,
spe = NULL
)
```

Arguments

markerlist a list of marker genes, with each element of the list being the vector of cell type

specific marker genes

spatial_count Raw spatial resolved transcriptomics data, each column is a spatial location, and

each row is a gene.

spatial_location

data frame, with two columns representing the x and y coordinates of the spatial location. The rownames of this data frame should match eaxctly with the

columns of the spatial_count.

mincountgene Minimum counts for each gene

mincountspot Minimum counts for each spatial location

spe a SpatialExperiment object containing spatial data in the counts assay, and

spatial coordinates in the spatialCoords.

Value

Returns a SpatialExperiment object with estimated cell type proportion stored in object\$Proportion_CARD. Because this is a reference-free version, the columns of estimated proportion is not cell type but cell type cluster

```
library(RcppML)
library(NMF)
library(RcppArmadillo)
data(markerList)
data(spatial_count)
data(spatial_location)
CARDfree_obj <- CARD_refFree(
markerlist = markerList[8:16],
spatial_count = spatial_count[1:2500, ],
spatial_location = spatial_location,
mincountgene = 100,
mincountspot = 5
)</pre>
```

CARD_scmapping 11

CARD_scmapping	Extension of CARD into performing single cell Mapping from non- single cell spatial transcriptomics dataset.

Description

Extension of CARD into performing single cell Mapping from non-single cell spatial transcriptomics dataset.

Usage

```
CARD_scmapping(CARD_object, shapeSpot = "Square", numcell, ncore = 10)
```

Arguments

CARD_object	CARD object create by the CARD_deconvolution function.
shapeSpot	a character indicating whether the sampled spatial coordinates for single cells locating in a Square-like region or a Circle-like region. The center of this region is the measured spatial location in the non-single cell resolution spatial transcriptomics data. The default is 'Square', the other shape is 'Circle'
numcell	a numeric value indicating the number of single cells in each measured location, we suggest 20 for ST technology, 7 for 10x Viisum and 2 for Slide-seq
ncore	a numeric value indicating the number of cores used to accelerating the procedure

Value

Returns a SingleCellExperiment SCE object with the mapped expression at single cell resolution and the spatial location information of each single cell

```
library(SingleCellExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
   sc_count = sc_count,
   sc_meta = sc_meta,
   spatial_count = spatial_count,
    spatial_location = spatial_location,
   ct_varname = "cellType",
   ct_select = unique(sc_meta$cellType),
   sample_varname = "sampleInfo",
   mincountgene = 100,
   mincountspot = 5
)
```

CARD_visualize_Cor

```
scMapping <- CARD_scmapping(
CARD_obj,
shapeSpot = "Square",
numcell = 20,
ncore = 2)
print(scMapping)</pre>
```

CARD_visualize_Cor

Visualize the cell type proportion correlation

Description

Visualize the cell type proportion correlation

Usage

```
CARD_visualize_Cor(proportion, colors = colors)
```

Arguments

proportion Data frame, cell type proportion estimated by CARD in either original resolution

or enhanced resolution.

colors Vector of color names that you want to use, if NULL, we will use the default

color scale c("#91a28c","white","#8f2c37")

Value

Returns a ggcorrplot figure.

```
library(ggplot2)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
   sc_count = sc_count,
   sc_meta = sc_meta,
   spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
   ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
   mincountgene = 100,
   mincountspot = 5
CARD_visualize_Cor(CARD_obj$Proportion_CARD, colors = NULL)
```

CARD_visualize_gene

Visualize the spatial distribution of cell type proportion

Description

Visualize the spatial distribution of cell type proportion

Usage

```
CARD_visualize_gene(
   spatial_expression,
   spatial_location,
   gene_visualize,
   colors = colors,
   NumCols
)
```

Arguments

spatial_expression

Data frame, spatial gene expression in either original resolution or enhanced

resolution.

spatial_location

Data frame, spatial location information.

gene_visualize Vector of selected gene names that are interested to visualize

colors Vector of color names that you want to use, if NULL, we will use the default

color scale in virdis palette

NumCols Numeric, number of columns in the figure panel, it depends on the number of

cell types you want to visualize.

Value

Returns a ggplot2 figure.

```
library(ggplot2)
library(SummarizedExperiment)
library(SpatialExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,</pre>
```

14 *CARD_visualize_pie*

```
spatial_location = spatial_location,
  ct_varname = "cellType",
  ct_select = unique(sc_meta$cellType),
  sample_varname = "sampleInfo",
  mincountgene = 100,
  mincountspot = 5
)

CARD_visualize_gene(
  spatial_expression = assays(CARD_obj)$spatial_countMat,
  spatial_location = spatialCoords(CARD_obj),
  gene_visualize = c("A4GNT", "AAMDC", "CD248"),
  colors = NULL,
  NumCols = 3
)
```

CARD_visualize_pie

Visualize the spatial distribution of cell type proportion in a geom scatterpie plot

Description

Visualize the spatial distribution of cell type proportion in a geom scatterpie plot

Usage

```
CARD_visualize_pie(proportion, spatial_location, colors = NULL, radius = NULL)
```

Arguments

proportion Data frame, cell type proportion estimated by CARD in either original resolution

or enhanced resolution.

spatial_location

Data frame, spatial location information.

colors Vector of color names that you want to use, if NULL, we will use the color

palette "Spectral" from RColorBrewer package.

radius Numeric value about the radius of each pie chart, if NULL, we will calculate it

inside the function.

Value

Returns a ggplot2 figure.

Examples

```
library(ggplot2)
library(SpatialExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
    mincountgene = 100,
    mincountspot = 5
)
colors <- c(
    "#FFD92F", "#4DAF4A", "#FCCDE5", "#D9D9D9", "#377EB8", "#7FC97F",
    "#BEAED4", "#FDC086", "#FFFF99", "#386CB0", "#F0027F", "#BF5B17", "#666666", "#1B9E77", "#D95F02", "#7570B3", "#E7298A", "#66A61E",
    "#E6AB02", "#A6761D"
)
CARD_visualize_pie(
    proportion = CARD_obj$Proportion_CARD,
    spatial_location = spatialCoords(CARD_obj),
    colors = colors,
    radius = 0.52
)
```

CARD_visualize_prop

Visualize the spatial distribution of cell type proportion

Description

Visualize the spatial distribution of cell type proportion

Usage

```
CARD_visualize_prop(
  proportion,
  spatial_location,
  ct_visualize = ct_visualize,
  colors = c("lightblue", "lightyellow", "red"),
  NumCols,
  pointSize = 3
)
```

Arguments

proportion Data frame, cell type proportion estimated by CARD in either original resolution or enhanced resolution.

spatial_location
Data frame, spatial location information.

ct_visualize Vector of selected cell type names that are interested to visualize

colors Vector of color names that you want to use, if NULL, we will use the default color scale c("lightblue","lightyellow","red")

NumCols Numeric, number of columns in the figure panel, it depends on the number of cell types you want to visualize.

pointSize Size of each point used for plotting

Value

Returns a ggplot2 figure.

```
library(ggplot2)
library(SpatialExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(</pre>
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),
    sample_varname = "sampleInfo",
   mincountgene = 100,
   mincountspot = 5
ct_visualize <- c(</pre>
    "Acinar_cells", "Cancer_clone_A", "Cancer_clone_B",
    "Ductal_terminal_ductal_like", "Ductal_CRISP3_high-centroacinar_like",
    "Ductal_MHC_Class_II", "Ductal_APOL1_high-hypoxic", "Fibroblasts"
CARD_visualize_prop(
    proportion = CARD_obj$Proportion_CARD,
    spatial_location = spatialCoords(CARD_obj),
    ct_visualize = ct_visualize,
    colors = c("lightblue", "lightyellow", "red"),
   NumCols = 4,
    pointSize = 3.0
)
```

```
CARD_visualize_prop_2CT
```

Visualize the spatial distribution of two cell type proportions on the same plot

Description

Visualize the spatial distribution of two cell type proportions on the same plot

Usage

```
CARD_visualize_prop_2CT(
  proportion,
  spatial_location,
  ct2_visualize = ct2_visualize,
  colors = NULL
)
```

Arguments

proportion Data frame, cell type proportion estimated by CARD in either original resolution

or enhanced resolution.

spatial_location

Data frame, spatial location information.

ct2_visualize Vector of selected two cell type names that are interested to visualize, here we

only focus on two cell types

colors list of color names that you want to use for each cell type, if NULL, we will use

the default color scale list list(c("lightblue", "lightyellow", "red"), c("lightblue", "lightyellow", "black")

Value

Returns a ggplot2 figure.

```
library(ggplot2)
library(SpatialExperiment)
data(spatial_count)
data(spatial_location)
data(sc_count)
data(sc_meta)
CARD_obj <- CARD_deconvolution(
    sc_count = sc_count,
    sc_meta = sc_meta,
    spatial_count = spatial_count,
    spatial_location = spatial_location,
    ct_varname = "cellType",
    ct_select = unique(sc_meta$cellType),</pre>
```

Description

Create the CARD object

Usage

```
createCARDfreeObject(
  markerlist,
  spatial_count,
  spatial_location,
  mincountgene = 100,
  mincountspot = 5,
  spe = NULL
)
```

Arguments

markerlist a list of marker genes, with each element of the list being the vector of cell type

specific marker genes

spatial_count Raw spatial resolved transcriptomics data, each column is a spatial location, and

each row is a gene.

spatial_location

data frame, with two columns representing the x and y coordinates of the spatial location. The rownames of this data frame should match eaxctly with the

columns of the spatial_count.

mincountgene Minimum counts for each gene

mincountspot Minimum counts for each spatial location

spe a SpatialExperiment object containing spatial data in the counts assay, and

spatial coordinates in the spatial Coords.

createCARDObject 19

Value

Returns CARDfree object with filtered spatial count and marker gene list.

createCARDObject

Create the CARD object

Description

Create the CARD object

Usage

```
createCARDObject(
   sc_count,
   sc_meta,
   spatial_count,
   spatial_location,
   ct_varname,
   ct_select,
   sample_varname,
   mincountgene = 100,
   mincountspot = 5,
   sce = NULL,
   spe = NULL
)
```

Arguments

sc_count	Raw scRNA-seq count data, each column is a cell and each row is a gene.
sc_meta	data frame, with each row representing the cell type and/or sample information of a specific cell. The row names of this data frame should match exactly with the column names of the sc_count data
spatial_count	Raw spatial resolved transcriptomics data, each column is a spatial location, and each row is a gene.
spatial_location	on
	data frame, with two columns representing the x and y coordinates of the spatial location. The rownames of this data frame should match eaxctly with the columns of the spatial_count.
ct_varname	character, the name of the column in metadata that specifies the cell type annotation information
ct_select	vector of cell type names that you are interested in to deconvolute, default as NULL. If NULL, then use all cell types provided by single cell dataset;
sample_varname	character, the name of the column in metadata that specifies the sample information. If NULL, we just use the whole as one sample.
mincountgene	Minimum counts for each gene

20 create_ref

mincountspot	Minimum counts for each spatial location
sce	a SingleCellExperiment object containing scRNA-seq count data in the counts assay, and cell types and sample information in the colData.
spe	a SpatialExperiment object containing spatial data in the counts assay, and spatial coordinates in the spatialCoords.

Value

Returns CARD object with filtered spatial count and single cell RNA-seq dataset.

create_ref Construct the mean gene expression basis matrix (B), this is the faster version	?r
--	----

Description

Construct the mean gene expression basis matrix (B), this is the faster version

Usage

```
create_ref(sc_eset, ct_select = NULL, ct_varname, sample_varname = NULL)
```

Arguments

sc_eset	S4 class for storing data from single-cell experiments. This format is usually created by the package SingleCellExperiment with stored counts, along with the usual metadata for genes and cells.
ct_select	vector of cell type names that you are interested in to deconvolute, default as NULL. If NULL, then use all cell types provided by single cell dataset;
ct_varname	character, the name of the column in metaData that specifies the cell type annotation information
sample_varname	character, the name of the column in metaData that specifies the sample information. If NULL, we just use the whole as one sample.

Value

Return a list of basis (B) matrix

get_high_res_cords 21

get_high_res_cords The cell	function to sample the spatial location information for each single
-----------------------------	---

Description

The function to sample the spatial location information for each single cell

Usage

```
get_high_res_cords(cords, numcell, shape = "Square")
```

Arguments

cords	The spatial location information in the measure spatial locations, with the first and second columns represent the 2-D x-y coordinate system
numcell	a numeric value indicating the number of single cells in each measured location, we suggest 20 for ST technology, 7 for 10x Viisum and 2 for Slide-seq
shape	a character indicating whether the sampled spatial coordinates for single cells locating in a Square-like region or a Circle-like region. The center of this region is the measured spatial location in the non-single cell resolution spatial transcriptomics data. The default is 'Square', the other shape is 'Circle'

Value

Returns a dataframe with the sampled spatial location information for each single cell

get_weight_for_cell

Description

The function to estimate the cell type composition signature for each single cell in the scRNaseq reference data

Usage

```
get_weight_for_cell(sc_eset, ct_varname, ct_select, sample_varname, B)
```

22 mvn_cv

Arguments

tation information, stored in the CARD object	sc_eset	the sc_eset stored in the CARD object
NULL. stored in the CARD object sample_varname character,the name of the column in metaData that specifies the sample information. stored in the CARD object	ct_varname	character, the name of the column in metaData that specifies the cell type annotation information, stored in the CARD object
mation. stored in the CARD object	ct_select	vector of cell type names that you are interested in to deconvolute, default as NULL. stored in the CARD object
B reference basis matrix stored in the CARD object.	sample_varname	1
	В	reference basis matrix stored in the CARD object.

Value

Returns a matrix of the cell type composition signature for each single cell in the scRNaseq reference

|--|

Description

The marker gene list is a list format with each element of the list being the cell type specific gene markers.

Usage

```
data(markerList)
```

Format

An object of class list of length 20.

mvn_cv	Imputation and Construction of High-Resolution Spatial Maps for Cell Type Composition and Gene Expression by the spatial correlation structure between original spatial locations and new grided spatial locations
mvn_cv	Type Composition and Gene Expression by the spatial correlation structure between original spatial locations and new grided spatial

Description

Imputation and Construction of High-Resolution Spatial Maps for Cell Type Composition and Gene Expression by the spatial correlation structure between original spatial locations and new grided spatial locations

Usage

```
mvn_cv(
  vtrain,
  location_orig,
  train_ind,
  test_ind,
  B,
  xinput_norm,
  optimal_b,
  optimal_phi,
  lambda,
  ineibor
)
```

Arguments

vtrain	Matrix, estimated V matrix from CARD
location_orig	Data frame, spatial location data frame of the original spatial resolved transcriptomics dataset, stored in the spatialCoords(CARD_object)
train_ind	Vector, index of the original spatial locations
test_ind	Vector, index of the newly grided spatial locations
В	Matrix, used in the deconvolution as the reference basis matrix
xinput_norm	Matrix, used in the deconvolution as the normalized spatial count data
optimal_b	Vector, vector of the intercept for each cel type estimated based on the original spatial resolution
optimal_phi	Numeric, the optimal phi value stored in CARD_object
lambda	Vector, vector of cell type specific scalar in the CAR model
ineibor	Numeric, number of neighbors used in the imputation on newly grided spatial locations, default is 10.

Value

Return a list with the imputed Cell type composition Vtest matrix on the newly grided spatial locations and predicted normalized gene expression

```
norm_coords_train_test
```

Normalize the new spatial locations without changing the shape and relative positions

Description

Normalize the new spatial locations without changing the shape and relative positions

24 sample_grid_within

Usage

```
norm_coords_train_test(location_orig, train_ind, test_ind)
```

Arguments

location_orig Data frame, spatial location data frame of the original spatial resolved transcrip-

tomics dataset, stored in the spatialCoords(CARD_object)

train_ind Vector, Index of the original spatial locations

test_ind Vector, Index of the newly grided spatial locations

Value

Return the normalized spatial location data frame

sample_grid_within Make new spatial locations on unmeasured tissue through grids.

Description

Make new spatial locations on unmeasured tissue through grids.

Usage

```
sample_grid_within(location, num_sample, concavity = 2)
```

Arguments

location Data frame, spatial location data frame of the original spatial resolved transcrip-

tomics dataset, stored in the spatialCoords(CARD_object)

num_sample Numeric, approximate number of cells in grid within the shape of the spatial

location data frame

concavity Numeric, a relative measure of concavity. The default is 2.0, which can prode-

cure detailed enough shapes. Infinity results in a convex hull while 1 results in

a more detailed shape.

Value

Return a list of data frame with newly grided points

sc_count 25

sc_count

scRNA-seq count data

Description

The scRNA-seq count data must be in the format of matrix or sparseMatrix, while each row represents a gene and each column represents a cell.

Usage

```
data(sc_count)
```

Format

An object of class dgCMatrix with 7000 rows and 1926 columns.

sc_meta

scRNAseq meta data

Description

The scRNAseq meta data must be in the format of data frame while each row represents a cell. The rownames of the scRNAseq meta data should match exactly with the column names of the scRNAseq count data. The sc_meta data must contain the column indicating the cell type assignment for each cell (e.g., "cellType" column in the example sc_meta data). Sample/subject information should be provided, if there is only one sample, we can add a column by sc_meta\$sampleInfo = "sample1".

Usage

```
data(sc_meta)
```

Format

An object of class data. frame with 1926 rows and 3 columns.

26 sc_QC

sc_QC

Quality control of scRNA-seq count data

Description

Quality control of scRNA-seq count data

Usage

```
sc_QC(
  counts_in,
  metadata,
  ct_varname,
  ct_select,
  sample_varname = NULL,
  min_cells = 0,
  min_genes = 0
)
```

Arguments

counts_in	Raw scRNAseq count data, each column is a cell and each row is a gene.
metadata	data frame, metadata with "ct_varname" specify the cell type annotation information and "sample_varname" specify the sample information
ct_varname	character, the name of the column in metadata that specifies the cell type annotation information
ct_select	vector of cell type names that you are interested in to deconvolute, default as NULL. If NULL, then use all cell types provided by single cell dataset;
sample_varname	character, the name of the column in metadata that specifies the sample information. If NULL, we just use the whole as one sample.
min_cells	numeric, we filtered out the non-expressed cells.
min_genes	numeric we filtered out the non-expressed genes

Value

Return the filtered scRNA-seq data and meta data stored in a S4 class (SingleCellExperiment)

select_info 27

select_info Select Informative Genes used in the deconvolution	select_info	Select Informative Genes used in the deconvolution	
--	-------------	--	--

Description

Select Informative Genes used in the deconvolution

Usage

```
select_info(basis, sc_eset, commongene, ct_select, ct_varname)
```

Arguments

basis	Reference basis matrix.
sc_eset	scRNAseq data along with meta data stored in the S4 class format (SingleCell-Experiment).
commongene	common genes between scRNAseq count data and spatial resolved transcriptomics data.
ct_select	vector of cell type names that you are interested in to deconvolute, default as NULL. If NULL, then use all cell types provided by single cell dataset;
ct_varname	character, the name of the column in metaData that specifies the cell type annotation information

Value

a vector of informative genes selected

Description

This method provides a concise summary of an object of class CARD, displaying key information including the project name, the number of spots, the number of cell types, and a sample of the Proportion_CARD matrix.

Usage

```
## S4 method for signature 'CARD'
show(object)
```

Arguments

object An object of class CARD.

28 Sigma

Value

A concise summary of the CARD object is printed to the console.

show, CARDfree-method Show method for the CARDfree class

Description

This method provides a concise summary of an object of class CARDfree, displaying key information including the project name, the number of spots, the number of cell types, and a sample of the Proportion_CARD matrix.

Usage

```
## S4 method for signature 'CARDfree'
show(object)
```

Arguments

object An object of class CARDfree.

Value

A concise summary of the CARDfree object is printed to the console.

Sigma Calculate the variance covariance matrix used in the imputation of the new grided locations

Description

Calculate the variance covariance matrix used in the imputation of the new grided locations

Usage

```
Sigma(location_orig, train_ind, test_ind, optimal_phi, ineibor)
```

Arguments

location_orig	Data frame, spatial location data frame of the original spatial resolved transcriptomics dataset, stored in the spatialCoords(CARD_object)
train_ind	Vector, index of the original spatial locations
test_ind	Vector, index of the newly grided spatial locations
optimal_phi	Numeric, the optimal phi value stored in CARD_object
ineibor	Numeric, number of neighbors used in the imputation on newly grided spatial locations, default is 10.

spatial_count 29

Value

Return a list with the imputed Cell type composition Vtest matrix on the newly grided spatial locations and predicted normalized gene expression

spatial_count

Spatial transcriptomics count data

Description

The spatial transcriptomics count data must be in the format of matrix or sparseMatrix, while each row represents a gene and each column represents a spatial location. The column names of the spatial data can be in the "XcoordxYcoord" (i.e., 10x10) format, but you can also maintain your original spot names, for example, barcode names.

Usage

```
data(spatial_count)
```

Format

An object of class dgCMatrix with 11000 rows and 428 columns.

spatial_location

Spatial location data

Description

The spatial location data must be in the format of data frame while each row represents a spatial location, the first column represents the x coordinate and the second column represents the y coordinate. The rownames of the spatial location data frame should match exactly with the column names of the spatial_count.

Usage

```
data(spatial_location)
```

Format

An object of class data. frame with 428 rows and 2 columns.

Index

```
* datasets
                                                Sigma, 28
    markerList, 22
                                                spatial_count, 29
    sc_count, 25
                                                spatial\_location, 29
    sc_meta, 25
    spatial_count, 29
    spatial_location, 29
assign_sc_cords, 3
CARD-class, 3
CARD_deconvolution, 7
CARD_imputation, 8
CARD_refFree, 9
CARD_scmapping, 11
CARD_visualize_Cor, 12
CARD_visualize_gene, 13
CARD_visualize_pie, 14
CARD_visualize_prop, 15
CARD_visualize_prop_2CT, 17
CARDfree, 4
CARDfree-class, 5
CARDref, 6
create_ref, 20
createCARDfreeObject, 18
createCARDObject, 19
get_high_res_cords, 21
get_weight_for_cell, 21
markerList, 22
mvn_cv, 22
norm_coords_train_test, 23
sample_grid_within, 24
sc_count, 25
sc_meta, 25
sc_QC, 26
select_info, 27
show, CARD-method, 27
show, CARDfree-method, 28
```