
Package ‘MBASED’
December 11, 2024

Type Package

Title Package containing functions for ASE analysis using
Meta-analysis Based Allele-Specific Expression Detection

Version 1.41.0

Date 2014-08-27

Author Oleg Mayba, Houston Gilbert

Maintainer Oleg Mayba <mayba.oleg@gene.com>

Description The package implements MBASED algorithm for detecting
allele-specific gene expression from RNA count data, where
allele counts at individual loci (SNVs) are integrated into a
gene-specific measure of ASE, and utilizes simulations to
appropriately assess the statistical significance of observed
ASE.

biocViews Sequencing, GeneExpression, Transcription

Depends RUnit, BiocGenerics, BiocParallel, GenomicRanges,
SummarizedExperiment

Suggests BiocStyle

License Artistic-2.0

git_url https://git.bioconductor.org/packages/MBASED

git_branch devel

git_last_commit 8637000

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-12-10

Contents
estimateMAF1s . 2
estimateMAF2s . 3
FT . 5

1

2 estimateMAF1s

getMuRho . 6
getPFinal . 7
getSimulationPvalue . 8
logLikelihoodCalculator1s . 9
logLikelihoodCalculator2s . 10
maxLogLikelihoodCalculator1s . 11
maxLogLikelihoodCalculator2s . 12
MBASED . 14
MBASEDMetaAnalysis . 14
MBASEDMetaAnalysisGetMeansAndSEs . 15
MBASEDVectorizedMetaprop . 17
MBASEDVectorizedPropDiffTest . 19
runMBASED . 20
runMBASED1s . 25
runMBASED1s1aseID . 27
runMBASED2s . 29
runMBASED2s1aseID . 31
shiftAndAttenuateProportions . 33
testNumericDiff . 34
testQuantiles . 35
vectorizedRbetabinomAB . 36

Index 38

estimateMAF1s Function that given observed count data returns a maximum likelihood
estimate of the underlying haplotype frequency. Both situations where
the haplotype are known and unknown are handled. In the latter case,
likelihood is further maximized over all possible assignments of alleles
to haplotypes.

Description

Function that given observed count data returns a maximum likelihood estimate of the underlying
haplotype frequency. Both situations where the haplotype are known and unknown are handled. In
the latter case, likelihood is further maximized over all possible assignments of alleles to haplotypes.

Usage

estimateMAF1s(lociAllele1Counts, lociTotalCounts, lociAllele1NoASEProbs,
lociRhos, isPhased = FALSE, checkArgs = FALSE)

Arguments

lociAllele1Counts

counts of allele1-supporting reads at individual loci. Must be a vector of non-
negative integers.

estimateMAF2s 3

lociTotalCounts

total read counts of at individual loci. Must be a vector of positive integers.
lociAllele1NoASEProbs

probabilities of observing allele1-supporting reads at individual loci under con-
ditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus). Must be a vector with entries >0 and <1.

lociRhos dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial). Must be a numeric vector
with entries >=0 and <1.

isPhased single boolean specifying whether the phasing has already been performed, in
which case the lociAllele1Counts represent the same haplotype. If FALSE (DE-
FAULT), likelihood is further maximized over all possible assignments of alleles
to haplotypes.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Details

Given observed read counts supporting allele1 at a collection of loci, the total read counts at those
loci, the probablities of observing allele1-supporting reads under conditions of no ASE and the
dispersion parameters, this function returns a maximum likelihood estimate of the major haplotype
frequency as well as corresponding assignment of alleles to haplotypes.

Value

a list with two elements: MAF (MLE of major allele frequency) and allele1IsMajor (whether allele1
is assigned to haplotype corresponding to maximum likleihood MAF).

Examples

MBASED:::estimateMAF1s(lociAllele1Counts=c(5, 24), lociTotalCounts=c(15, 36), lociAllele1NoASEProbs=c(0.5, 0.5), lociRhos=c(0,0), isPhased=TRUE)
MBASED:::estimateMAF1s(lociAllele1Counts=c(5, 24), lociTotalCounts=c(15, 36), lociAllele1NoASEProbs=c(0.5, 0.5), lociRhos=c(0,0), isPhased=FALSE)

estimateMAF2s Function that given observed count data returns a maximum likelihood
estimate of the underlying haplotype frequency. Both situations where
the haplotype are known and unknown are handled. In the latter case,
likelihood is further maximized over all possible assignments of alleles
to haplotypes.

Description

Function that given observed count data returns a maximum likelihood estimate of the underlying
haplotype frequency. Both situations where the haplotype are known and unknown are handled. In
the latter case, likelihood is further maximized over all possible assignments of alleles to haplotypes.

4 estimateMAF2s

Usage

estimateMAF2s(lociAllele1CountsSample1, lociTotalCountsSample1,
lociAllele1CountsSample2, lociTotalCountsSample2,
lociAllele1NoASEProbsSample1, lociAllele1NoASEProbsSample2, lociRhosSample1,
lociRhosSample2, isPhased = FALSE, checkArgs = FALSE)

Arguments

lociAllele1CountsSample1, lociAllele1CountsSample2
counts of allele1-supporting reads at individual loci in sample1 and sample2,
respectively. Both arguments must be vectors of non-negative integers.

lociTotalCountsSample1, lociTotalCountsSample2
total read counts of at individual loci in sample1 and sample2, respectively. Both
arguments must be vectors of non-negative integers.

lociAllele1NoASEProbsSample1, lociAllele1NoASEProbsSample2
probabilities of observing haplotype A-supporting reads at individual loci under
conditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus) in sample1 and sample2, respectively. Both
arguments must be vectors with entries >0 and <1.

lociRhosSample1, lociRhosSample2
dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial) in sample1 and sample2,
respectively. Both arguments must be vectors with entries >=0 and <1.

isPhased single boolean specifying whether the phasing has already been performed, in
which case the lociAllele1CountsSample1 (and, therefore, lociAllele1CountsSample2)
represent the same haplotype. If FALSE (DEFAULT), likelihood is further max-
imized over all possible assignments of alleles to haplotypes.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Details

Given observed read counts supporting allele1 at a collection of loci in two samples, the total read
counts at those loci, the probablities of observing allele1-supporting reads under conditions of no
ASE and the dispersion parameters, this function returns a maximum likelihood estimate of the
major haplotype frequency as well as corresponding assignment of alleles to haplotypes.

Value

a list with two elements: MAF (MLE of major allele frequency) and allele1IsMajor (whether allele1
is assigned to haplotype corresponding to maximum likleihood MAF).

Examples

MBASED:::estimateMAF2s(lociAllele1CountsSample1=c(5, 24), lociTotalCountsSample1=c(15, 36), lociAllele1CountsSample2=c(15, 44), lociTotalCountsSample2=c(45, 66), lociAllele1NoASEProbsSample1=c(0.5, 0.5), lociAllele1NoASEProbsSample2=c(0.5, 0.5), lociRhosSample1=c(0,0), lociRhosSample2=c(0,0), isPhased=TRUE)
MBASED:::estimateMAF2s(lociAllele1CountsSample1=c(5, 12), lociTotalCountsSample1=c(15, 36), lociAllele1CountsSample2=c(15, 22), lociTotalCountsSample2=c(45, 66), lociAllele1NoASEProbsSample1=c(0.5, 0.5), lociAllele1NoASEProbsSample2=c(0.5, 0.5), lociRhosSample1=c(0,0), lociRhosSample2=c(0,0), isPhased=FALSE)

FT 5

FT Freeman-Tukey transformation functions.

Description

Freeman-Tukey transformation functions.

Usage

FT(x, n, checkArgs = FALSE)

unFT(z, n, checkArgs = FALSE)

FTAdjust(x, n, p, checkArgs = FALSE)

isCountMajorFT(x, n, p, tieBreakRandom = FALSE, checkArgs = FALSE)

Arguments

n number of trials, (vector/matrix of) positive number(s).

x number of successes, (vector/matrix of) non-negative number(s) <=n.

p probability of success on each trial, (vector/matrix of) value(s) between 0 and 1.

tieBreakRandom if FALSE, a backransformed value of 0.5 in isCountMajorFT() will be called
major; if TRUE, it will be called major with probability 0.5 and minor with
probability 0.5. DEFAULT: FALSE

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

z (vector/matrix of) transformed proportion(s).

Details

FT takes integers x and n, where x is observed Bin(n, p) random variable, and performs Freeman-
Tukey transformation. Arguments x and n are vectorized and must be of the same length (if vectors)
or dimension (if matrices).

unFT takes transformed proportion and original total count and untransforms it, using the same ap-
proach as metaprop() function from R package "meta", with one correction: to avoid situations that
arise in practice when z takes a value that cannot result from the supplied value of n (e.g. z corre-
sponding to a count of < 0 out of n or > n out of n), we assign z to be the smallest/largest allowed
value. Arguments z, and n are vectorized and must be of same length (if vectors) or dimension (if
matrices).

FTAdjust takes integers x and n, and probability p, where x is observed Bin(n, p) random variable
and performs Freeman-Tukey transformation, followed by shifting the transformed variable so that
its mean is 2*arcsin(sqrt(0.5)) instead of 2*arcsin(sqrt(p)). Arguments x, n and p are vectorized and
must be of the same length (if vectors) or dimension (if matrices).

6 getMuRho

isCountMajorFT takes original observed count and total count, transforms, adjusting for underlying
probability of success and returns TRUE or FALSE depending on whether the count is major (back-
transformed proportion >=0.5 or not). Arguments x, n and p are vectorized and must be of same
length (if vectors) or dimension (if matrices).

Value

FT returns (vector of) transformed proportion(s) of successes.

unFT returns (vector/matrix of) backtransformed proportion(s).

FTAdjust returns (vector/matrix of) shifted transformed proportion(s).

isCountMajorFT returns (vector/matrix of) TRUE or FALSE, depending on whether count is judged
to be from ’major’ allele or not.

Examples

isTRUE(all.equal(MBASED:::FT(x=5,n=10), pi/2))
MBASED:::unFT(z=MBASED:::FT(x=5, n=10), n=10)
MBASED:::unFT(z=MBASED:::FT(x=7, n=10), n=10)
isTRUE(all.equal(MBASED:::unFT(z=MBASED:::FT(x=7, n=10), n=10), 0.7))
MBASED:::FT(x=50, n=100)
MBASED:::FTAdjust(x=50, n=100, p=0.5) ## transformation is trivial if underlying probability of success is 0.5
MBASED:::FT(x=80, n=100)
MBASED:::FTAdjust(x=80, n=100, p=0.8) ## if underlying probability of success is 0.8, the shift adjusts transformed proportion to have mean close to pi/2
MBASED:::isCountMajorFT(x=6, n=10, p=0.5, tieBreakRandom=FALSE)
MBASED:::isCountMajorFT(x=6, n=10, p=0.8, tieBreakRandom=FALSE)
MBASED:::isCountMajorFT(x=4, n=10, p=0.2, tieBreakRandom=FALSE)
table(replicate(1000, MBASED:::isCountMajorFT(x=5, n=10, p=0.5, tieBreakRandom=FALSE)))
table(replicate(1000, MBASED:::isCountMajorFT(x=5, n=10, p=0.5, tieBreakRandom=TRUE)))

getMuRho Functions to convert between shape parameters a and b for beta dis-
tribution and parameters mu (mean) and rho (dispersion).

Description

Functions to convert between shape parameters a and b for beta distribution and parameters mu
(mean) and rho (dispersion).

Usage

getMuRho(a, b, checkArgs = FALSE)

getAB(mu, rho, checkArgs = FALSE)

getPFinal 7

Arguments

a, b shape parameters for beta distribution. Must be >0.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

mu, rho mean and dispersion parameters for beta distribution, respectively. Must be in
(0,1) interval, although rho is allowed to take on value of 0 (binomial distribu-
tion).

Details

getMuRho takes in shape parameters a and b and returns list with parameters mu (a/(a+b)) and rho
(1/(a+b+1)). The function is vectorized (both a and b can be vectors (of the same length) or matrices
(of the same dimension)).

getAB takes in shape mean and dispersion parameters mu and rho and returns shape parameters
a (mu*(1/rho-1)) and b ((1-mu)*(1/rho-1)). The function is vectorized (both mu and rho can be
vectors (of the same length) or matrices (of the same dimension)).

Value

getMuRho returns a list with 2 elements: mu and rho (vectors, if the arguments a and b are vectors).

getAB returns a list with 2 elements: a and b (vectors, if arguments mu and rho are vectors). For
values of rho=0, the resulting entries are NA.

See Also

Other bbFunctions: vectorizedRbetabinomAB, vectorizedRbetabinomMR, vectorizedRbetabinomMR

Other bbFunctions: vectorizedRbetabinomAB, vectorizedRbetabinomMR, vectorizedRbetabinomMR

Examples

MBASED:::getMuRho(a=1, b=1)
MBASED:::getAB(mu=1/2, rho=1/3)
MBASED:::getMuRho(MBASED:::getAB(mu=0.7, rho=0.0045)$a, MBASED:::getAB(mu=0.7, rho=0.0045)$b)
MBASED:::getAB(MBASED:::getMuRho(a=0.2, b=4)$mu, MBASED:::getMuRho(a=0.2, b=4)$rho)

getPFinal Function that adjusts true underlying allele frequency for pre-existing
allelic bias to produce actual generating probability of observing
allele-supporting read

Description

Function that adjusts true underlying allele frequency for pre-existing allelic bias to produce actual
generating probability of observing allele-supporting read

8 getSimulationPvalue

Usage

getPFinal(trueAF, noASEAF, checkArgs = FALSE)

Arguments

trueAF true underlying allele frequency. Must be a single number >=0 and <=1.
noASEAF probability of observing allele-supporting read under conditions of no ASE.

Must be a vector of numbers >0 and <1.
checkArgs single boolean specifying whether arguments should be checked for adherence

to specifications. DEFAULT: FALSE

Details

Given true underlying allele frequency AF and probability of observing reads supporting that allele
under conditiosn of no ASE (P(allele, noASE)), it calculates the generating probability for observed
allele-supporting reads as P(allele-supporting read)=AF*P(allele, noASE)/(AF*P(allele, noASE) +
(1-AF)*(1-P(allele, noASE))).

Value

a vector of generating probabilities of the same length as noASEAF

Examples

MBASED:::getPFinal(trueAF=1, noASEAF=seq(0.1, 0.9, by=0.1)) ## is always 1
MBASED:::getPFinal(trueAF=0, noASEAF=seq(0.1, 0.9, by=0.1)) ## is always 0
MBASED:::getPFinal(trueAF=0.3, noASEAF=0.5) ## no pre-existing allelic bias
c(MBASED:::getPFinal(trueAF=0.3, noASEAF=0.9), MBASED:::getPFinal(trueAF=1-0.3, noASEAF=1-0.9)) ## strong pre-existing allelic bias

getSimulationPvalue Function to calculate simulations-based p-values

Description

Function to calculate simulations-based p-values

Usage

getSimulationPvalue(observedVal, simulatedVals, direction = "greater",
checkArgs = FALSE)

Arguments

observedVal observed statistic (single number)
simulatedVals statistics observed in simulations of the outcomes based on assumed null distri-

bution.
direction one of ’greater’ or ’less’, depending on the nature of statistic.
checkArgs single boolean specifying whether arguments should be checked for adherence

to specifications. DEFAULT: FALSE

logLikelihoodCalculator1s 9

Details

this function calculates fraction of simulated values (statistics from null distribution) that are >=
(direction=’greater’) or <= (direction=’less’) than the observed statistic. The choice of direction
depends on the nature of the statistic (i.e., direction is ’greater’ if large values of statistic indicate
departure from null hypothesis, and direction is ’less’ if the opposite is the case)

Value

a fraction of simulated statistics that are as or more extreme as the observed one

Examples

MBASED:::getSimulationPvalue(observedVal=2, simulatedVals=1:10, direction='greater')
MBASED:::getSimulationPvalue(observedVal=2, simulatedVals=1:10, direction='less')

logLikelihoodCalculator1s

Function that given observed count data along a known haplotype re-
turns a function that can calculate the likelihood of observing that data
for a supplied underlying haplotype frequency.

Description

Function that given observed count data along a known haplotype returns a function that can calcu-
late the likelihood of observing that data for a supplied underlying haplotype frequency.

Usage

logLikelihoodCalculator1s(lociHapACounts, lociTotalCounts, lociHapANoASEProbs,
lociRhos, checkArgs = FALSE)

Arguments

lociHapACounts counts of haplotype A-supporting reads at individual loci. Must be a vector of
non-negative integers.

lociTotalCounts

total read counts of at individual loci. Must be a vector of positive integers.
lociHapANoASEProbs

probabilities of observing haplotype A-supporting reads at individual loci under
conditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus). Must be a vector with entries >0 and <1.

lociRhos dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial). Must be a numeric vector
with entries >=0 and <1.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

10 logLikelihoodCalculator2s

Details

Given observed read counts supporting hapltoype A at a collection of loci, the total read counts at
those loci, the probablities of observing haplotype A-supporting reads under conditions of no ASE
and the dispersion parameters, this function returns a function of a single argument, pHapA, that
calculates the likelihood of observing the given haplotype A-supporting counts under the assump-
tion that the true underlying frequency of haplotype A is pHapA.

Value

a function of a single argument pHapA that calculates log likelihood of the observed data if the true
underlying haplotype A frequency is pHapA.

Examples

LLC <- MBASED:::logLikelihoodCalculator1s(lociHapACounts=c(5, 12), lociTotalCounts=c(10, 24), lociHapANoASEProbs=c(0.5, 0.5), lociRhos=c(0,0))
LLC(0.5) ## the MLE estimate of hapA frequency
LLC(0.1) ## highly implausible value of pHapA
LLC (0.51)

logLikelihoodCalculator2s

Function that given observed count data along a known haplotype re-
turns a function that can calculate the likelihood of observing that data
for a supplied underlying haplotype frequency.

Description

Function that given observed count data along a known haplotype returns a function that can calcu-
late the likelihood of observing that data for a supplied underlying haplotype frequency.

Usage

logLikelihoodCalculator2s(lociHapACountsSample1, lociTotalCountsSample1,
lociHapACountsSample2, lociTotalCountsSample2, lociHapANoASEProbsSample1,
lociHapANoASEProbsSample2, lociRhosSample1, lociRhosSample2,
checkArgs = FALSE)

Arguments

lociHapACountsSample1, lociHapACountsSample2
counts of haplotype A-supporting reads at individual loci in sample1 and sam-
ple2, respectively. Both arguments must be vectors of non-negative integers.

lociTotalCountsSample1, lociTotalCountsSample2
total read counts of at individual loci in sample1 and sample2, respectively. Both
arguments must be vectors of non-negative integers.

maxLogLikelihoodCalculator1s 11

lociHapANoASEProbsSample1, lociHapANoASEProbsSample2
probabilities of observing haplotype A-supporting reads at individual loci under
conditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus) in sample1 and sample2, respectively. Both
arguments must be vectors with entries >0 and <1.

lociRhosSample1, lociRhosSample2
dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial) in sample1 and sample2,
respectively. Both arguments must be vectors with entries >=0 and <1.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Details

Given observed read counts supporting hapltoype A at a collection of loci in two samples, the
total read counts at those loci, the probablities of observing haplotype A-supporting reads under
conditions of no ASE and the dispersion parameters, this function returns a function of a single
argument, pHapA, that calculates the likelihood of observing the given haplotype A-supporting
counts under the assumption that the true underlying frequency of haplotype A is pHapA.

Value

a function of a single argument pHapA that calculates log likelihood of the observed data if the true
underlying haplotype A frequency is pHapA.

Examples

LLC <- MBASED:::logLikelihoodCalculator2s(lociHapACountsSample1=c(5, 12), lociTotalCountsSample1=c(15, 36), lociHapACountsSample2=c(15, 22), lociTotalCountsSample2=c(45, 66), lociHapANoASEProbsSample1=c(0.5, 0.5), lociHapANoASEProbsSample2=c(0.5, 0.5), lociRhosSample1=c(0,0), lociRhosSample2=c(0,0))
LLC(1/3) ## the MLE estimate of hapA frequency
LLC(0.9) ## highly implausible value of pHapA
LLC (0.334)

maxLogLikelihoodCalculator1s

Function that given observed count data along a known haplotype re-
turns a maximum likelihood estimate of the underlying haplotype fre-
quency.

Description

Function that given observed count data along a known haplotype returns a maximum likelihood
estimate of the underlying haplotype frequency.

Usage

maxLogLikelihoodCalculator1s(lociHapACounts, lociTotalCounts,
lociHapANoASEProbs, lociRhos, checkArgs = FALSE)

12 maxLogLikelihoodCalculator2s

Arguments

lociHapACounts counts of haplotype A-supporting reads at individual loci. Must be a vector of
non-negative integers.

lociTotalCounts

total read counts of at individual loci. Must be a vector of positive integers.

lociHapANoASEProbs

probabilities of observing haplotype A-supporting reads at individual loci under
conditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus). Must be a vector with entries >0 and <1.

lociRhos dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial). Must be a numeric vector
with entries >=0 and <1.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Details

Given observed read counts supporting hapltoype A at a collection of loci, the total read counts
at those loci, the probablities of observing haplotype A-supporting reads under conditions of no
ASE and the dispersion parameters, this function returns a maximum likelihood estimate of the true
underlying frequency of haplotype A as well as corresponding value of log-likelihood.

Value

a list with two elements: maximum (MLE of haplotype A frequency) and objective (loglikelihood
at MLE). These are the two elements that are output by the optimize() function, which is used
internally by the maxLogLikelihoodCalculator1s.

Examples

MBASED:::maxLogLikelihoodCalculator1s(lociHapACounts=c(5, 12), lociTotalCounts=c(10, 24), lociHapANoASEProbs=c(0.5, 0.5), lociRhos=c(0,0))

maxLogLikelihoodCalculator2s

Function that given observed count data along a known haplotype re-
turns a maximum likelihood estimate of the underlying haplotype fre-
quency.

Description

Function that given observed count data along a known haplotype returns a maximum likelihood
estimate of the underlying haplotype frequency.

maxLogLikelihoodCalculator2s 13

Usage

maxLogLikelihoodCalculator2s(lociHapACountsSample1, lociTotalCountsSample1,
lociHapACountsSample2, lociTotalCountsSample2, lociHapANoASEProbsSample1,
lociHapANoASEProbsSample2, lociRhosSample1, lociRhosSample2,
checkArgs = FALSE)

Arguments

lociHapACountsSample1, lociHapACountsSample2
counts of haplotype A-supporting reads at individual loci in sample1 and sam-
ple2, respectively. Both arguments must be vectors of non-negative integers.

lociTotalCountsSample1, lociTotalCountsSample2
total read counts of at individual loci in sample1 and sample2, respectively. Both
arguments must be vectors of non-negative integers.

lociHapANoASEProbsSample1, lociHapANoASEProbsSample2
probabilities of observing haplotype A-supporting reads at individual loci under
conditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus) in sample1 and sample2, respectively. Both
arguments must be vectors with entries >0 and <1.

lociRhosSample1, lociRhosSample2
dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial) in sample1 and sample2,
respectively. Both arguments must be vectors with entries >=0 and <1.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Details

Given observed read counts supporting hapltoype A at a collection of loci in two samples, the
total read counts at those loci, the probablities of observing haplotype A-supporting reads under
conditions of no ASE and the dispersion parameters, this function returns a maximum likelihood
estimate of the true underlying frequency of haplotype A as well as corresponding value of log-
likelihood.

Value

a list with two elements: maximum (MLE of haplotype A frequency) and objective (loglikelihood
at MLE). These are the two elements that are output by the optimize() function, which is used
internally by the maxLogLikelihoodCalculator2s.

Examples

MBASED:::maxLogLikelihoodCalculator2s(lociHapACountsSample1=c(5, 12), lociTotalCountsSample1=c(15, 36), lociHapACountsSample2=c(15, 22), lociTotalCountsSample2=c(45, 66), lociHapANoASEProbsSample1=c(0.5, 0.5), lociHapANoASEProbsSample2=c(0.5, 0.5), lociRhosSample1=c(0,0), lociRhosSample2=c(0,0))

14 MBASEDMetaAnalysis

MBASED MBASED

Description

Package that contains functions to process sets of SNVs and determine the genes that show allele-
specific expression (ASE)

Details

The package implements MBASED method for detecting allele-specific gene expression. The main
workhorse function is runMBASED which is used to run both 1-sample and 2-sample (allelic im-
balance) analyses. Please consult the accompanying vignette and the runMBASED help page for
more details.

Author(s)

Oleg Mayba <maybao@gene.com> Houston Gilbert <gilbert.houston@gene.com>

MBASEDMetaAnalysis Generic function to perform standard meta analysis.

Description

Generic function to perform standard meta analysis.

Usage

MBASEDMetaAnalysis(zValuesMat, zVariancesMat, alternative = "two.sided",
checkArgs = FALSE)

Arguments

zValuesMat matrix of z-values, on standard normal scale. Each row represents a specific
genomic locus, while each column represents a set of observed values across
loci (in practice, multiple columns represent different outcomes of simulations).

zVariancesMat matrix of (estimated) variances of each z-value in zValuesMat. The interpreta-
tion of rows and columns is the same as for zValuesMat.

alternative one of ’two.sided’, ’greater’, ’less’. DEFAULT: ’two.sided’.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

MBASEDMetaAnalysisGetMeansAndSEs 15

Details

MBASEDMetaAnalysis performs meta analysis calculations in a vectorized fashion. Input matrices
zValuesMat and zVariancesMat have one column for each set of loci (’independent studies’) to be
combined, with each row corresponding to an individual locus. MBASEDMetaAnalysis uses meta
analysis approach to combine values in each column of zValuesMat into a single column-specific
value of z (using corresponding supplied variances to appropriately weight contributions of each
individual z). The function reports the resulting averaged z values, together with corresponding
standard deviations (standard errors), for fixed-effects setting (note: random effects are not mean-
ingful in the context of SNVs in ASE). If the supplied matrices have a single row (only one locus),
no meta-analysis is possible, and the original value and corresponding standard deviations are re-
turned.

Value

a list with 5 elements:

hetPVal a 1-row marix of heterogeneity p-values.

hetQ a 1-row matrix of heterogeneity statistics.
fixedEffectsMeans

a 1-row matrix of column-specific fixed-effects meta analysis restults.
fixedEffectsSEs

a 1-row matrix of estimated SEs of fixed-effects meta analysis results.

pvalueFixed a 1-row matrix of p-values for fixed-effects analysis.

Examples

set.seed(127000)
zVals1=rnorm(5, mean=rep(2,5), sd=sqrt(1:5))
zVals2=rnorm(5, mean=0, sd=1)+c(0,0,5,0,0) ## one outlier
MBASED:::MBASEDMetaAnalysis(zValuesMat=matrix(c(zVals1, zVals2), ncol=2), zVariancesMat=matrix(c(1:5, rep(1,5)), ncol=2), alternative='two.sided')

MBASEDMetaAnalysisGetMeansAndSEs

Helper function to obtain estimate of underlying mean and the stan-
dard error of the estimate in meta analysis framework.

Description

Helper function to obtain estimate of underlying mean and the standard error of the estimate in meta
analysis framework.

Usage

MBASEDMetaAnalysisGetMeansAndSEs(zValuesMat, zVariancesMat, checkArgs = FALSE)

16 MBASEDMetaAnalysisGetMeansAndSEs

Arguments

zValuesMat matrix of z-values, on standard normal scale. Each row represents a specific
genomic locus, while each column represents a set of observed values across
loci (in practice, multiple columns represent different outcomes of simulations).

zVariancesMat matrix of (estimated) variances of each z-value in zValuesMat. The interpreta-
tion of rows and columns is the same as for zValuesMat.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Details

MBASEDMetaAnalysisGetMeansAndSEs is a helper function employed by MBASEDMetaAnaly-
sis(). For each column of input matrices, it calculates the inverse-variance weighted column average
and provides an estimate of the standard error of this mean estimator. Input matrices zValuesMat
and zVariancesMat have one column for each set of loci (’independent studies’) to be combined,
with each row corresponding to an individual locus.

Value

a list with 4 elements:

weightsMat a matrix of same dimension as zValuesMat, giving the assigned weight for each
observation

totalWeights a vector of length equal to number of rows in zValuesMat, giving the column
sum of assigned weights

hetQ a vector of length equal to number of rows in zValuesMat, giving the estimated
standard error for the corresponding entries in meanValues

meanValues a vector of length equal to number of rows in zValuesMat, giving for each col-
umn the estimated average value.

hetQ a vector of length equal to number of rows in zValuesMat, giving the estimated
standard error for the corresponding entries in meanValues

Examples

set.seed(127000)
zVals1=rnorm(5, mean=rep(2,5), sd=sqrt(1:5))
zVals2=rnorm(5, mean=0, sd=1)+c(0,0,5,0,0) ## one outlier
MBASED:::MBASEDMetaAnalysisGetMeansAndSEs(zValuesMat=matrix(c(zVals1, zVals2), ncol=2), zVariancesMat=matrix(c(1:5, rep(1,5)), ncol=2))

MBASEDVectorizedMetaprop 17

MBASEDVectorizedMetaprop

Vectorized wrapper around metaprop() function from R package
"meta" with some modifications and extensions to beta-binomial count
models.

Description

Vectorized wrapper around metaprop() function from R package "meta" with some modifications
and extensions to beta-binomial count models.

Usage

MBASEDVectorizedMetaprop(countsMat, totalsMat, probsMat, rhosMat,
alternative = "two.sided", checkArgs = FALSE)

Arguments

countsMat matrix of observed major allele counts. Each row represents a specific genomic
locus, while each column represents a set of observed major allele counts across
loci (in practice, multiple columns represent different outcomes of count simu-
lations).

totalsMat matrix of total read counts across both alleles. The interpretation of rows and
columns is the same as for countsMat.

probsMat matrix of probabilities of success (means of beta distributions in case of beta-
binomial extensions). The interpretation of rows and columns is the same as for
countsMat.

rhosMat matrix of dispersion parameters of beta distribution in case of beta-binomial
counts. The interpretation of rows and columns is the same as for countsMat.

alternative one of ’two.sided’, ’greater’, ’less’. DEFAULT: ’two.sided’.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Details

MBASEDVectorizedMetaprop performs computations similar to metaprop() with default options
(fixed-effects only), but with less overhang, in a vectorized fashion, and accomodating extensions
to beta-binomial distribution. It also allows the input counts to come from loci with different under-
lying binomial probabilities (means of beta distribution, in cases of beta-binomial extensions). One
technical difference is the way the value of ’n’ is calculated for Freeman-Tukey back-transformation
of average ’z’ into a proportion. While metaprop() uses harmonic mean of n’s at individual loci
(which puts more weight toward loci with small read counts), we use the weighted mean of n’s
with weights proportional to n’s, by analogy with how the value of average ’z’ is calculated from
individual z’s. Input matrices countsMat and totalsMat have one column for each set of loci (’in-
dependent studies’) to be combined, with each row corresponding to an individual locus. Matrix
probsMat provides the underlying binomial probabilities (means of beta distributions, in case of

18 MBASEDVectorizedMetaprop

beta-binomial extensions), while matrix rhosMat gives the values of the dispersion at the loci.
MBASEDVectorizedMetaprop uses meta analysis approach with Freeman-Tukey transformation
to report for each set of loci (each column) its estimated overall proportion on both transformed
and untransformed scale, corresponding standard errors (on transformed scale), z-values (based
on expected value of 2*asin(sqrt(0.5)) on transformed scale under the null hypothesis of common
underlying proportion (binomial probability or mean of beta distribution) of 0.5), and correspond-
ing p-values based on imposing normal distribution assumption on z-values, where alternative hy-
pothesis of ’two.sided’, ’greater’, and ’less’ can be specified, with the latter two specified w.r.t.
2*asin(sqrt(0.5)). If some of the supplied entries in probsMat are different from 0.5, then the corre-
sponding transformed proportions are shifted, so that the new mean for the resulting z-values is still
approximately 2*asin(sqrt(0.5)). Extensions to beta-binomial counts are accomodated by increas-
ing the variance of each individual z from 1/(n+0.5) to rho+1/(n+0.5), where rho is the dispersion
parameter of the beta distribution. The function is used to cacluate p-values in ASE settings, where
countsMat represents major allele counts, totalsMat represents total allele counts, probsMat rep-
resents the underlying binomial probabilities of observing major allele-supporting read (means of
beta distributions in case of beta-binomial extensions), which may be different, e.g., for major allele
counts coming from reference and alternative alleles in case of pre-existing allelic bias, and rhosMat
provides values of dispersion parameter for beta-binomial counts (0, in case of binomial model) for
individual loci.

Value

a list with 7 elements:

hetPVal a 1-row marix of heterogeneity p-values.

hetQ a 1-row matrix of heterogeneity statistics.

TEFinal a 1-row matrix of estimated proportions on transformed scale.

seTEFinal a 1-row matrix of estimated SEs of proportion estimates on transformed scale.

propFinal a 1-row matrix of estimated proportions on 0-1 scale.

pValue a 1-row matrix of corresponding p-values.

propLoci a matrix of same dimension as original input matrices giving estimated propor-
tions on transformed scale at each individual locus.

Examples

SNVCoverage=rep(sample(10:100,5),2) ## 2 genes with 5 loci each
SNVAllele1Counts=rbinom(length(SNVCoverage), SNVCoverage, 0.5)
SNVMajorAlleleCounts=pmax(SNVAllele1Counts, SNVCoverage-SNVAllele1Counts)
MBASED:::MBASEDVectorizedMetaprop(countsMat=matrix(SNVAllele1Counts, ncol=2), totalsMat=matrix(SNVCoverage, ncol=2), probsMat=matrix(rep(0.5, length(SNVCoverage)), ncol=2), rhosMat=matrix(rep(0, length(SNVCoverage)), ncol=2), alternative='two.sided') ## ideal situation when phasing is known
MBASED:::MBASEDVectorizedMetaprop(countsMat=matrix(SNVMajorAlleleCounts, ncol=2), totalsMat=matrix(SNVCoverage, ncol=2), probsMat=matrix(rep(0.5, length(SNVCoverage)), ncol=2), rhosMat=matrix(rep(0, length(SNVCoverage)), ncol=2), alternative='two.sided') ## what happens if we put all major alleles together into a single haplotype and obtain nominal p-value

MBASEDVectorizedPropDiffTest 19

MBASEDVectorizedPropDiffTest

Vectorized wrapper around a test for difference of 2 proportions.

Description

Vectorized wrapper around a test for difference of 2 proportions.

Usage

MBASEDVectorizedPropDiffTest(countsMatSample1, totalsMatSample1,
countsMatSample2, totalsMatSample2, probsMatSample1, probsMatSample2,
rhosMatSample1, rhosMatSample2, alternative = "two.sided",
checkArgs = FALSE)

Arguments

countsMatSample1, countsMatSample2
matrices of observed major allele counts in sample1 and sample2, respectively.
Each row represents a specific genomic locus, while each column represents a
set of observed major allele counts across loci (in practice, multiple columns
represent different outcomes of count simulations).

totalsMatSample1, totalsMatSample2
matrices of total read counts across both alleles in sample1 and sample2, respec-
tively. The interpretation of rows and columns is the same as for countsMatSam-
ple1.

probsMatSample1, probsMatSample2
matrices of underlying probabilites of observing the major allele in sample1 and
sample2, respectively. The interpretation of rows and columns is the same as for
countsMatSample1.

rhosMatSample1, rhosMatSample2
matrices of dispersion parameters of beta distributions for each locus in sample1
and sample2, respectively. The interpretation of rows and columns is the same
as for countsMatSample1.

alternative one of ’two.sided’, ’greater’, ’less’. DEFAULT: ’two.sided’

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Details

MBASEDVectorizedPropDiffTest implements meta-analysis-like apporoach using proportion dif-
ferences at each locus as variables to be aggregated. Input matrices countsMatSample1, totalsMat-
Sample1, countsMatSample2, totalsMatSample2, probsMatSample1, probsMatSample2, rhosMat-
Sample1, and rhosMatSample2 have 1 column for each set of loci (’independent studies’) to be
combined, with each row corresponding to an individual locus. MBASEDVectorizedPropDiffTest
uses meta analysis approach by transforming counts at each locus into proportions and combininig

20 runMBASED

the proportion differences (between sample1 and sample2) using the inverse-variance weighted
schema. The function reports proportion difference estimates, corresponding standard errors, z-
values (based on expected value of 0 under the null hypothesis of overall difference of 0) , and
corresponding p-values based on normal distribution assumption of z-values, where alternative hy-
pothesis of ’two.sided’, ’greater’, and ’less’ can be specified, with the latter two specified w.r.t.
0. Adjustment for pre-existing allelic bias is performed by taking observed proportion in each
sample, transforming it with FT transformation, adjusting for allelic bias as in 1-sample case and
back-transforming to get a shifted proportion. The shifted proportion is then used to estimate its
variance. The function is used to cacluate p-values in ASE settings, where countsMatSample1 and
countsMatSample2 represent major allele counts in sample1 and sample2, respectively, and totals-
MatSample1 and totalsMatSample2 represent total allele counts. Matrices probsMatSample1 and
probsMatSample2 capture the pre-existing allelic bias by supplying the underlying probabilities of
observing alleles currently specified as major in absence of any allele-specific expression, and rhos-
MatSample1 and rhosMatSample2 provide values of dispersion parameter for beta-binomial counts
(0, in case of binomial model) for individual loci within each sample.

Value

a list with 7 elements:

hetPval a 1-row marix of heterogeneity P-values

hetQ a 1-row matrix of heterogeneity statistics

TEFinal a 1-row matrix of estimated proportion differences

seTEFinal a 1-row matrix of estimated SEs of prop differences estimates
propDifferenceFinal

a 1-row matrix of estimated proportion differences

pValue a 1-row matrix of corresponding p-values.
propDifferenceLoci

a matrix of same dimension as original input matrices giving estimated propor-
tion differences on transformed scale at each individual locus.

Examples

SNVCoverageTumor=sample(10:100,10) ## 2 genes with 5 loci each
SNVCoverageNormal=sample(10:100,10) ## 2 genes with 5 loci each
SNVAllele1CountsTumor=rbinom(length(SNVCoverageTumor), SNVCoverageTumor, 0.5)
SNVAllele1CountsNormal=rbinom(length(SNVCoverageNormal), SNVCoverageNormal, 0.5)
MBASED:::MBASEDVectorizedPropDiffTest(countsMatSample1=matrix(SNVAllele1CountsTumor, ncol=2), totalsMatSample1=matrix(SNVCoverageTumor, ncol=2), countsMatSample2=matrix(SNVAllele1CountsNormal, ncol=2), totalsMatSample2=matrix(SNVCoverageNormal, ncol=2), probsMatSample1=matrix(rep(0.5, length(SNVCoverageTumor)), ncol=2), probsMatSample2=matrix(rep(0.5, length(SNVCoverageNormal)), ncol=2), rhosMatSample1=matrix(rep(0, length(SNVCoverageTumor)), ncol=2), rhosMatSample2=matrix(rep(0, length(SNVCoverageNormal)), ncol=2), alternative='two.sided')

runMBASED Main function that implements MBASED.

Description

Main function that implements MBASED.

runMBASED 21

Usage

runMBASED(ASESummarizedExperiment, isPhased = FALSE, numSim = 0,
BPPARAM = SerialParam())

Arguments

ASESummarizedExperiment

RangedSummarizedExperiment object containing information on read counts
to be used for ASE detection. Rows represent individual heterozygous loci
(SNVs), while columns represent individual samples. There should be either
one or two columns, depending on whether one- or two-sample analysis is to
be performed. Joint analysis of multiple samples or replicates is currently not
supported, and one-sample analysis of multiple samples must be done through
independent series of calls to runMBASED(). Note that for two-sample anal-
ysis, only loci which are heterozygous in both samples must be supplied (this
excludes, e.g., tumor-specific mutations in cases of tumor/normal comparisons).
For two-sample analysis, it is assumed that the first column corresponds to ’sam-
ple1’ and the second column to ’sample2’ in the sample1-vs-sample2 compari-
son. This is important, since differential ASE assessment is not symmetric and
sample1-vs-sample2 comparison may yield different results from sample2-vs-
sample1 comparison (the relationship is set up by assuming that only instances
of ASE greater in sample1 than in sample2 are of interest). assays(ASESummarizedExperiment)
must contain matrices lociAllele1Counts and lociAllele2Counts of non-negative
integers, containing counts of allele1 (e.g. reference) and allele2 (e.g. alterna-
tive) at individual loci. All supplied loci must have total read count (across
both alleles) greater than 0 (in each of the two samples, in the case of two-
sample analysis). Allele counts are not necessarily phased (see ’isPhased’ ar-
gument below), so allele1 counts may not represent the same haplotype. as-
says(ASESummarizedExperiment) may also contain matrix lociAllele1CountsNoASEProbs
with entries >0 and <1, containing probabilities of observing allele1-supporting
reads at individual loci under conditions of no ASE (which may differ for in-
dividual samples in the two-sample analysis). If this matrix is not provided, it
is constructed such that every entry in the matrix is set to 0.5 (no pre-existing
allelic bias at any locus in any sample). assays(ASESummarizedExperiment)
may also contain matrix lociCountsDispersions with entries >=0 and <1, con-
taining dispersion parameters of beta-binomial read count distribution at indi-
vidual loci (which may differ for individual samples in the two-sample analy-
sis). If this matrix is not provided, it is constructed such that every entry in the
matrix is set to 0 (read count-generating distribution at each locus in each sam-
ple is binomial). Any other matrices in assays(ASESummarizedExperiment)
are ignored by MBASED. rowRanges(ASESummarizedExperiment) must be
supplied by the user, containing additional information about SNVs, includ-
ing a required column ’aseID’, specifying for each locus the unique unit of
expression that it belongs to (e.g., gene; must be non-NA). MBASED uses
names(rowRanges(ASESummarizedExperiment)), when specified, to give a unique
identifier to each SNV; if no names are provided, the SNVs are labeled ’locus1’,
’locus2’, ..., in the row order.

isPhased specifies whether the true haplotypes are known, in which case the lociAl-

22 runMBASED

lele1Counts are assumed to represent allelic counts along the same haplotype
(and the same is true of lociAllele2Counts). Must be either TRUE or FALSE
(DEFAULT).

numSim number of simulations to perform to estimate statistical signficance of observed
ASE. Must be a non-negative integer. If set to 0 (DEFAULT), no simulations are
performed and nominal p-values are reported.

BPPARAM argument to be passed to function bplapply(), when parallel achitecture is used
to speed up simulations (parallelization is done over aseIDs). DEFAULT: Seri-
alParam() (no parallelization).

Value

RangedSummarizedExperiment object with rows representing individual aseIDs (genes) and a sin-
gle column. assays(returnObject) includes single-column matrices ’majorAlleleFrequency’ (1-sample
analysis only), ’majorAlleleFrequencyDifference’ (2-sample analysis only), ’pValueASE’ (unad-
justed ASE p-value), ’pValueHeterogeneity’ (unadjusted inter-loci variability p-value, set to NA
for aseIDs with only 1 locus). Note that p-values are not adjusted for multiple hypothesis testing,
and the users should carry out such an adjustment themselves, e.g. by employing the utilities in
the multtest package. In addition, metadata(returnObject) is a list containing a RangedSumma-
rizedExperiment object names ’locusSpecificResults’, with rows corresponding to individual loci
(SNVs) and a single column, that provides information on locus-level MBASED analysis results.
assays(metadata(returnObject)$locusSpecificResults) contains single-column matrices ’MAF’ (es-
timate of allele frequency for gene-wide major allele at the locus, 1-sample analysis only), ’MAFD-
ifference’ (estimate of allele frequency difference for gene-wide major allele at the locus, 2-sample
analysis only), and ’allele1IsMajor’ (whether allele1 is assigned to major haplotype by MBASED).

Examples

mySNVs <- GRanges(
seqnames=c('chr1', 'chr2', 'chr2', 'chr2'),
ranges=IRanges(start=c(1000, 20020, 20285, 21114), width=1),
aseID=c('gene1', rep('gene2', 3)),
allele1=c('G', 'A', 'C', 'A'),
allele2=c('T', 'C', 'T', 'G')

)
names(mySNVs) <- paste0('SNV', 1:4)
RangedSummarizedExperiment object with data to run tumor vs. normal comparison
mySE_TumorVsNormal <- SummarizedExperiment(

assays=list(
lociAllele1Counts=matrix(

c(
c(25,10,22,14),
c(18,17,14,28)

),
ncol=2,
dimnames=list(

names(mySNVs),
c('tumor', 'normal')

)
),

runMBASED 23

lociAllele2Counts=matrix(
c(

c(20,16,15,16),
c(23,9,24,17)

),
ncol=2,
dimnames=list(

names(mySNVs),
c('tumor', 'normal')

)
),
lociAllele1CountsNoASEProbs=matrix(

c(
c(0.48, 0.51, 0.55, 0.45),
c(0.52, 0.43, 0.52, 0.43)

),
ncol=2,
dimnames=list(

names(mySNVs),
c('tumor', 'normal')

)
),
lociCountsDispersions=matrix(

c(
c(0.005, 0.007, 0.003, 0.01),
c(0.001, 0.004, 0.02, 0.006)

),
ncol=2,
dimnames=list(

names(mySNVs),
c('tumor', 'normal')

)
)

),
rowRanges=mySNVs

)
twoSampleAnalysisTumorVsNormal <- runMBASED(

ASESummarizedExperiment=mySE_TumorVsNormal,
numSim=10^6,
BPPARAM=SerialParam(),
isPhased=FALSE

)
rowRanges(twoSampleAnalysisTumorVsNormal)
assays(twoSampleAnalysisTumorVsNormal)$majorAlleleFrequencyDifference
assays(twoSampleAnalysisTumorVsNormal)$pValueASE
assays(twoSampleAnalysisTumorVsNormal)$pValueHeterogeneity
assays(metadata(twoSampleAnalysisTumorVsNormal)$locusSpecificResults)$MAFDifference
assays(metadata(twoSampleAnalysisTumorVsNormal)$locusSpecificResults)$allele1IsMajor

exchanging the order of the columns will allow us to run normal vs. tumor comparison
Note that while results are the same for single-locus gene1, they differ for multi-locus gene2
mySE_NormalVsTumor <- SummarizedExperiment(

assays=lapply(names(assays(mySE_TumorVsNormal)), function(matName) {

24 runMBASED

curMat <- assays(mySE_TumorVsNormal)[[matName]]
modifiedMat <- curMat[,c('normal','tumor')]
return(modifiedMat)

}),
colData=colData(mySE_TumorVsNormal)[2:1,],
rowRanges=rowRanges(mySE_TumorVsNormal)

)
names(assays(mySE_NormalVsTumor)) <- names(assays(mySE_TumorVsNormal))
twoSampleAnalysisNormalVsTumor <- runMBASED(

ASESummarizedExperiment=mySE_NormalVsTumor,
numSim=10^6,
BPPARAM=SerialParam(),
isPhased=FALSE

)
rowRanges(twoSampleAnalysisNormalVsTumor)
assays(twoSampleAnalysisNormalVsTumor)$majorAlleleFrequencyDifference
assays(twoSampleAnalysisNormalVsTumor)$pValueASE
assays(twoSampleAnalysisNormalVsTumor)$pValueHeterogeneity
assays(metadata(twoSampleAnalysisNormalVsTumor)$locusSpecificResults)$MAFDifference
assays(metadata(twoSampleAnalysisNormalVsTumor)$locusSpecificResults)$allele1IsMajor

we can also do separate one-sample analysis on tumor and normal samples
mySE_Tumor <- SummarizedExperiment(

assays=lapply(names(assays(mySE_TumorVsNormal)), function(matName) {
curMat <- assays(mySE_TumorVsNormal)[[matName]]
modifiedMat <- curMat[,'tumor',drop=FALSE]
return(modifiedMat)

}),
colData=colData(mySE_TumorVsNormal)[1,],
rowRanges=rowRanges(mySE_TumorVsNormal)

)
names(assays(mySE_Tumor)) <- names(assays(mySE_TumorVsNormal))
oneSampleAnalysisTumor <- runMBASED(

ASESummarizedExperiment=mySE_Tumor,
numSim=10^6,
BPPARAM=SerialParam(),
isPhased=FALSE

)
rowRanges(oneSampleAnalysisTumor)
assays(oneSampleAnalysisTumor)$majorAlleleFrequency
assays(oneSampleAnalysisTumor)$pValueASE
assays(oneSampleAnalysisTumor)$pValueHeterogeneity
assays(metadata(oneSampleAnalysisTumor)$locusSpecificResults)$MAF
assays(metadata(oneSampleAnalysisTumor)$locusSpecificResults)$allele1IsMajor

mySE_Normal <- SummarizedExperiment(
assays=lapply(names(assays(mySE_TumorVsNormal)), function(matName) {

curMat <- assays(mySE_TumorVsNormal)[[matName]]
modifiedMat <- curMat[,'normal',drop=FALSE]
return(modifiedMat)

}),
colData=colData(mySE_TumorVsNormal)[1,],
rowRanges=rowRanges(mySE_TumorVsNormal)

runMBASED1s 25

)
names(assays(mySE_Normal)) <- names(assays(mySE_TumorVsNormal))
oneSampleAnalysisNormal <- runMBASED(

ASESummarizedExperiment=mySE_Normal,
numSim=10^6,
BPPARAM=SerialParam(),
isPhased=FALSE

)
rowRanges(oneSampleAnalysisNormal)
assays(oneSampleAnalysisNormal)$majorAlleleFrequency
assays(oneSampleAnalysisNormal)$pValueASE
assays(oneSampleAnalysisNormal)$pValueHeterogeneity
assays(metadata(oneSampleAnalysisNormal)$locusSpecificResults)$MAF
assays(metadata(oneSampleAnalysisNormal)$locusSpecificResults)$allele1IsMajor

runMBASED1s Function that runs single-sample ASE calling using data from indi-
vidual loci (SNVs) within units of ASE (genes). Vector arguments
’lociAllele1Counts’, ’lociAllele2Counts’, ’lociAllele1NoASEProbs’,
’lociRhos’, and ’aseIDs’ should all be of the same length. Letting
i1, i2, .., iN denote the indices corresponding to entries within aseIDs
equal to a given aseID, the entries at those indices in the other vector
arguments provide information for the loci within that aseID. This in-
formation is then used by runMBASED1s1aseID. It is assumed that for
any i, the i-th entries of all vector arguments correspond to the same
locus. If argument ’isPhased’ (see below) is true, then entries corre-
sponding to allele1 at each locus must represent the same haplotype.

Description

Function that runs single-sample ASE calling using data from individual loci (SNVs) within units of
ASE (genes). Vector arguments ’lociAllele1Counts’, ’lociAllele2Counts’, ’lociAllele1NoASEProbs’,
’lociRhos’, and ’aseIDs’ should all be of the same length. Letting i1, i2, .., iN denote the indices
corresponding to entries within aseIDs equal to a given aseID, the entries at those indices in the
other vector arguments provide information for the loci within that aseID. This information is then
used by runMBASED1s1aseID. It is assumed that for any i, the i-th entries of all vector arguments
correspond to the same locus. If argument ’isPhased’ (see below) is true, then entries corresponding
to allele1 at each locus must represent the same haplotype.

Usage

runMBASED1s(lociAllele1Counts, lociAllele2Counts, lociAllele1NoASEProbs,
lociRhos, aseIDs, numSim = 0, BPPARAM = SerialParam(), isPhased = FALSE,
tieBreakRandom = FALSE, checkArgs = FALSE)

26 runMBASED1s

Arguments

lociAllele1Counts, lociAllele2Counts
vectors of counts of allele1 (e.g. reference) and allele2 (e.g., alternative) at indi-
vidual loci. Allele counts are not necessarily phased (see argument ’isPhased’),
so allele1 counts may not represent the same haplotype. Both arguments must
be vectors of non-negative integers.

lociAllele1NoASEProbs

probabilities of observing allele1-supporting reads at individual loci under con-
ditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus). Must be a vector with entries >0 and <1.

lociRhos dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial). Must be a vector with
entries >=0 and <1.

aseIDs the IDs of ASE units corresponding to the individual loci (e.g. gene names).

numSim number of simulations to perform. Must be a non-negative integer. If 0 (DE-
FAULT), no simulations are performed.

BPPARAM argument to be passed to bplapply(), when parallel achitecture is used to speed
up simulations (parallelization is done over aseIDs). DEFAULT: SerialParam()
(no parallelization).

isPhased single boolean specifying whether the phasing has already been performed, in
which case the lociAllele1Counts represent the same haplotype. DEFAULT:
FALSE.

tieBreakRandom single boolean specifying how ties should be broken during pseudo-phasing in
cases of unphased data (isPhased=FALSE). If TRUE, each of the two allele will
be assigned to major haplotype with probability=0.5. If FALSE (DEFAULT),
allele1 will be assigned to major haplotype and allele2 to minor haplotype.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Value

list with 3 elements:

ASEResults Data frame with each row reporting MBASED results for a given aseID (aseIDs
are provided as row names of this data frame). The columns of the data frame
are: majorAlleleFrequency, pValueASE, heterogeneityQ, and pValueHeterogene-
ity.

allele1IsMajor Vector of TRUE/FALSE of length equal to the number of supplied SNVs, report-
ing for each SNV whether allele1 represents major (TRUE) or minor (FALSE)
haplotype of the corresponding aseID.

lociMAF Vector of locus-specific estimates of the frequency of major allele, where ’ma-
jor’ refers to the haplotype of the gene found to be major by the ASE analysis.
Note that since the determination of the major/minor status is done at the level
of the gene, there may be loci with locus-specific MAF < 0.5.

runMBASED1s1aseID 27

Examples

SNVCoverage1 <- sample(10:100,5) ## gene with 5 loci
SNVAllele1Counts1 <- rbinom(length(SNVCoverage1), SNVCoverage1, 0.5)
SNVCoverage2 <- sample(10:100,5) ## gene with 5 loci
SNVAllele1Counts2 <- rbinom(length(SNVCoverage2), SNVCoverage2, 0.5)
MBASED:::runMBASED1s(lociAllele1Counts=c(SNVAllele1Counts1, SNVAllele1Counts2), lociAllele2Counts=c(SNVCoverage1-SNVAllele1Counts1, SNVCoverage2-SNVAllele1Counts2), lociAllele1NoASEProbs=rep(0.5, 10), lociRhos=rep(0, 10), aseIDs=rep(c('gene1','gene2'), each=5), numSim=10^6, BPPARAM=SerialParam(), isPhased=FALSE, tieBreakRandom=FALSE)

runMBASED1s1aseID Function that runs single-sample ASE calling using data from loci
(SNVs) within a single unit of ASE (gene). The i-th entry of each
of vector arguments ’lociAllele1Counts’, ’lociAllele2Counts’, ’lociAl-
lele1NoASEProbs’, ’lociRhos’ should correspond to the i-th locus. If
argument ’isPhased’ (see below) is true, then entries corresponding
to allele1 at each locus must represent the same haplotype. Note: for
each locus, at least one allele should have >0 supporting reads.

Description

Function that runs single-sample ASE calling using data from loci (SNVs) within a single unit of
ASE (gene). The i-th entry of each of vector arguments ’lociAllele1Counts’, ’lociAllele2Counts’,
’lociAllele1NoASEProbs’, ’lociRhos’ should correspond to the i-th locus. If argument ’isPhased’
(see below) is true, then entries corresponding to allele1 at each locus must represent the same
haplotype. Note: for each locus, at least one allele should have >0 supporting reads.

Usage

runMBASED1s1aseID(lociAllele1Counts, lociAllele2Counts, lociAllele1NoASEProbs,
lociRhos, numSim = 0, isPhased = FALSE, tieBreakRandom = FALSE,
checkArgs = FALSE)

Arguments

lociAllele1Counts, lociAllele2Counts
vectors of counts of allele1 (e.g. reference) and allele2 (e.g., alternative) at indi-
vidual loci. Allele counts are not necessarily phased (see argument ’isPhased’),
so allele1 counts may not represent the same haplotype. Both arguments must
be vectors of non-negative integers.

lociAllele1NoASEProbs

probabilities of observing allele1-supporting reads at individual loci under con-
ditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus). Must be a vector with entries >0 and <1.

lociRhos dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial). Must be a vector with
entries >=0 and <1.

numSim number of simulations to perform. Must be a non-negative integer. If 0 (DE-
FAULT), no simulations are performed.

28 runMBASED1s1aseID

isPhased single boolean specifying whether the phasing has already been performed, in
which case the lociAllele1Counts represent the same haplotype. DEFAULT:
FALSE.

tieBreakRandom single boolean specifying how ties should be broken during pseudo-phasing in
cases of unphased data (isPhased=FALSE). If TRUE, each of the two allele will
be assigned to major haplotype with probability=0.5. If FALSE (DEFAULT),
allele1 will be assigned to major haplotype and allele2 to minor haplotype.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Value

list with 6 elements

majorAlleleFrequency

Estimate of major allele frequency for this unit of ASE (gene).

pValueASE Estimate of p-value for observed extent of ASE (nominal if no simulations are
performed, simulations-based otherwise).

heterogeneityQ Statistic summarizing variability of locus-specific estimates of major allele fre-
quency if >1 locus is present. Set to NA for single-locus cases.

pValueHeterogeneity

Estimate of p-value for observed extent of variability of locus-specific estimates
of major allele frequency if >1 locus is present. Set to NA for single-locus cases.

lociAllele1IsMajor

Vector of booleans, specifying for each locus whether allele1 is assigned to ma-
jor (TRUE) or minor (FALSE) haplotype. If the data is phased (isPhased=TRUE),
then all elements of the vector are TRUE if haplotype 1 is found to be major, and
are all FALSE if haplotype 1 is found to be minor. In cases of unphased data (is-
Phased=FALSE), the assignment is provided by the pseudo-phasing procedure.

lociMAF Estimate of major allele (haplotype) frequency at individual loci. Note that since
’major’ and ’minor’ distinction is made at the level of gene haplotype, there may
be some loci where the frequency of the ’major’ haplotype is <0.5.

Examples

SNVCoverage <- sample(10:100,5) ## gene with 5 loci
SNVAllele1Counts <- rbinom(length(SNVCoverage), SNVCoverage, 0.5)
MBASED:::runMBASED1s1aseID(lociAllele1Counts=SNVAllele1Counts, lociAllele2Counts=SNVCoverage-SNVAllele1Counts, lociAllele1NoASEProbs=rep(0.5, length(SNVCoverage)), lociRhos=rep(0, length(SNVCoverage)), numSim=0, isPhased=FALSE, tieBreakRandom=FALSE) ## data is not phased, no simulations
MBASED:::runMBASED1s1aseID(lociAllele1Counts=SNVAllele1Counts, lociAllele2Counts=SNVCoverage-SNVAllele1Counts, lociAllele1NoASEProbs=rep(0.5, length(SNVCoverage)), lociRhos=rep(0, length(SNVCoverage)), numSim=10^6, isPhased=FALSE, tieBreakRandom=FALSE) ## data is not phased, simulations
MBASED:::runMBASED1s1aseID(lociAllele1Counts=SNVAllele1Counts, lociAllele2Counts=SNVCoverage-SNVAllele1Counts, lociAllele1NoASEProbs=rep(0.5, length(SNVCoverage)), lociRhos=rep(0, length(SNVCoverage)), numSim=0, isPhased=TRUE, tieBreakRandom=FALSE) ## data is phased, no simulations
MBASED:::runMBASED1s1aseID(lociAllele1Counts=SNVAllele1Counts, lociAllele2Counts=SNVCoverage-SNVAllele1Counts, lociAllele1NoASEProbs=rep(0.5, length(SNVCoverage)), lociRhos=rep(0, length(SNVCoverage)), numSim=10^6, isPhased=TRUE, tieBreakRandom=FALSE) ## data is phased, simulations

runMBASED2s 29

runMBASED2s Function that runs between-sample (differential) ASE calling us-
ing data from individual loci (SNVs) within units of ASE
(genes). Vector arguments ’lociAllele1CountsSample1’, ’lociAl-
lele2CountsSample1’, ’lociAllele1NoASEProbsSample1’, ’lociRhos-
Sample1’, ’lociAllele1CountsSample2’, ’lociAllele2CountsSample2’,
’lociAllele1NoASEProbsSample2’, ’lociRhosSample2’, and ’aseIDs’
should all be of the same length. Letting i1, i2, .., iN denote the in-
dices corresponding to entries within aseIDs equal to a given aseID,
the entries at those indices in the other vector arguments provide in-
formation for the loci within that aseID for the respective samples.
This information is then used by runMBASED2s1aseID. It is assumed
that for any i, the i-th entries of all vector arguments correspond to
the same locus, and that the entries corresponding to allele1 in sam-
ple1 and sample2 provide information on the same allele. If argument
’isPhased’ (see below) is true, then entries corresponding to allele1 at
each locus must represent the same haplotype.

Description

Function that runs between-sample (differential) ASE calling using data from individual loci (SNVs)
within units of ASE (genes). Vector arguments ’lociAllele1CountsSample1’, ’lociAllele2CountsSample1’,
’lociAllele1NoASEProbsSample1’, ’lociRhosSample1’, ’lociAllele1CountsSample2’, ’lociAllele2CountsSample2’,
’lociAllele1NoASEProbsSample2’, ’lociRhosSample2’, and ’aseIDs’ should all be of the same
length. Letting i1, i2, .., iN denote the indices corresponding to entries within aseIDs equal to
a given aseID, the entries at those indices in the other vector arguments provide information for
the loci within that aseID for the respective samples. This information is then used by runM-
BASED2s1aseID. It is assumed that for any i, the i-th entries of all vector arguments correspond to
the same locus, and that the entries corresponding to allele1 in sample1 and sample2 provide infor-
mation on the same allele. If argument ’isPhased’ (see below) is true, then entries corresponding to
allele1 at each locus must represent the same haplotype.

Usage

runMBASED2s(lociAllele1CountsSample1, lociAllele2CountsSample1,
lociAllele1CountsSample2, lociAllele2CountsSample2,
lociAllele1NoASEProbsSample1, lociAllele1NoASEProbsSample2, lociRhosSample1,
lociRhosSample2, aseIDs, numSim = 0, BPPARAM = SerialParam(),
isPhased = FALSE, tieBreakRandom = FALSE, checkArgs = FALSE)

Arguments

lociAllele1CountsSample1, lociAllele2CountsSample1,
lociAllele1CountsSample2, lociAllele2CountsSample2

vectors of counts of allele1 (e.g. reference) and allele2 (e.g. alternative) at in-
dividiual loci in sample1 and sample2. Allele counts are not necessarily phased

30 runMBASED2s

(see argument ’isPhased’), so allele1 counts may not represent the same haplo-
type. However, the two alleles (allele1 and allele2) must be defined identically
for both samples at each locus. All 4 arguments must be vectors of non-negative
integers.

lociAllele1NoASEProbsSample1, lociAllele1NoASEProbsSample2
probabilities of observing allele1-supporting reads at individual loci under con-
ditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus) in sample1 and sample2, respectively. Note
that these probabilities are allowed to be sample-specific. Each argument must
be a vector with entries >0 and <1.

lociRhosSample1, lociRhosSample2
dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial). Note that the dispersions
are allowed to be sample-specific. Each argument must be a vector with entries
>=0 and <1.

aseIDs the IDs of ASE units corresponding to the individual loci (e.g. gene names).

numSim number of simulations to perform. Must be a non-negative integer. If 0 (DE-
FAULT), no simulations are performed.

BPPARAM argument to be passed to bplapply(), when parallel achitecture is used to speed
up simulations (parallelization is done over aseIDs). DEFAULT: SerialParam()
(no parallelization).

isPhased single boolean specifying whether the phasing has already been performed, in
which case the lociAllele1CountsSample1 (and, therefore, lociAllele1CountsSample2)
represent the same haplotype. DEFAULT: FALSE.

tieBreakRandom single boolean specifying how ties should be broken during pseudo-phasing in
cases of unphased data (isPhased=FALSE). If TRUE, each of the two allele will
be assigned to major haplotype with probability=0.5. If FALSE (DEFAULT),
allele1 will be assigned to major haplotype and allele2 to minor haplotype.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Value

list with 3 elements:

ASEResults Data frame with each row reporting MBASED results for a given aseID (aseIDs
are provided as row names of this data frame). The columns of the data frame
are: majorAlleleFrequencyDifference, pValueASE, heterogeneityQ, and pVal-
ueHeterogeneity.

allele1IsMajor Vector of TRUE/FALSE of length equal to the number of supplied SNVs, report-
ing for each SNV whether allele1 represents major (TRUE) or minor (FALSE)
haplotype of the corresponding aseID.

lociMAFDifference

Vector of locus-specific estimates of the difference of major allele (haplotype)
frequency between the two samples. Note that ’major’ and ’minor’ distinction
is made at the level of gene haplotype in sample1.

runMBASED2s1aseID 31

Examples

SNVCoverageTumor=sample(10:100, 5)
SNVCoverageNormal=sample(10:100, 5)
SNVAllele1CountsTumor=rbinom(length(SNVCoverageTumor), SNVCoverageTumor, 0.5)
SNVAllele1CountsNormal=rbinom(length(SNVCoverageNormal), SNVCoverageNormal, 0.5)
MBASED:::runMBASED2s(lociAllele1CountsSample1=SNVAllele1CountsTumor, lociAllele2CountsSample1=SNVCoverageTumor-SNVAllele1CountsTumor, lociAllele1CountsSample2=SNVAllele1CountsNormal, lociAllele2CountsSample2=SNVCoverageNormal-SNVAllele1CountsNormal, lociAllele1NoASEProbsSample1=rep(0.5, length(SNVCoverageTumor)), lociAllele1NoASEProbsSample2=rep(0.5, length(SNVCoverageNormal)), lociRhosSample1=rep(0, length(SNVCoverageTumor)), lociRhosSample2=rep(0, length(SNVCoverageNormal)), aseIDs=c(rep('gene1',4), 'gene2'), numSim=10^6, BPPARAM=SerialParam(), isPhased=FALSE)

runMBASED2s1aseID Function that runs between-sample (differential) ASE calling using
data from loci (SNVs) within a single unit of ASE (gene). The i-th en-
try of each of vector arguments ’lociAllele1CountsSample1’, ’lociAl-
lele2CountsSample1’, ’lociAllele1NoASEProbsSample1’, ’lociRhos-
Sample1’, ’lociAllele1CountsSample2’, ’lociAllele2CountsSample2’,
’lociAllele1NoASEProbsSample2’, and ’lociRhosSample2’ should
correspond to the i-th locus. If argument ’isPhased’ (see below) is
true, then entries corresponding to allele1 at each locus must repre-
sent the same haplotype. Note: for each locus in each sample, at least
one allele should have >0 supporting reads.

Description

Function that runs between-sample (differential) ASE calling using data from loci (SNVs) within
a single unit of ASE (gene). The i-th entry of each of vector arguments ’lociAllele1CountsSample1’,
’lociAllele2CountsSample1’, ’lociAllele1NoASEProbsSample1’, ’lociRhosSample1’, ’lociAllele1CountsSample2’,
’lociAllele2CountsSample2’, ’lociAllele1NoASEProbsSample2’, and ’lociRhosSample2’ should
correspond to the i-th locus. If argument ’isPhased’ (see below) is true, then entries corresponding
to allele1 at each locus must represent the same haplotype. Note: for each locus in each sample, at
least one allele should have >0 supporting reads.

Usage

runMBASED2s1aseID(lociAllele1CountsSample1, lociAllele2CountsSample1,
lociAllele1CountsSample2, lociAllele2CountsSample2,
lociAllele1NoASEProbsSample1, lociAllele1NoASEProbsSample2, lociRhosSample1,
lociRhosSample2, numSim = 0, isPhased = FALSE, tieBreakRandom = FALSE,
checkArgs = FALSE)

Arguments

lociAllele1CountsSample1, lociAllele2CountsSample1,
lociAllele1CountsSample2, lociAllele2CountsSample2

vectors of counts of allele1 (e.g. reference) and allele2 (e.g. alternative) at in-
dividiual loci in sample1 and sample2. Allele counts are not necessarily phased
(see argument ’isPhased’), so allele1 counts may not represent the same haplo-
type. However, the two alleles (allele1 and allele2) must be defined identically
for both samples at each locus. All 4 arguments must be vectors of non-negative
integers.

32 runMBASED2s1aseID

lociAllele1NoASEProbsSample1, lociAllele1NoASEProbsSample2
probabilities of observing allele1-supporting reads at individual loci under con-
ditions of no ASE (e.g., vector with all entries set to 0.5, if there is no pre-
existing allelic bias at any locus) in sample1 and sample2, respectively. Note
that these probabilities are allowed to be sample-specific. Each argument must
be a vector with entries >0 and <1.

lociRhosSample1, lociRhosSample2
dispersion parameters of beta distribution at individual loci (set to 0 if the read
count-generating distribution at the locus is binomial). Note that the dispersions
are allowed to be sample-specific. Each argument must be a vector with entries
>=0 and <1.

numSim number of simulations to perform. Must be a non-negative integer. If 0 (DE-
FAULT), no simulations are performed.

isPhased single boolean specifying whether the phasing has already been performed, in
which case the lociAllele1CountsSample1 (and, therefore, lociAllele1CountsSample2)
represent the same haplotype. DEFAULT: FALSE.

tieBreakRandom single boolean specifying how ties should be broken during pseudo-phasing in
cases of unphased data (isPhased=FALSE). If TRUE, each of the two allele will
be assigned to major haplotype with probability=0.5. If FALSE (DEFAULT),
allele1 will be assigned to major haplotype and allele2 to minor haplotype.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Value

list with 7 elements

majorAlleleFrequencyDifference

Estimate of major allele frequency difference for this unit of ASE (gene). ’Ma-
jor’ here refers to the allelic imbalance within sample1, and the difference is
defined as Frequency(major, sample1)-Frequency(major, sample2).

pValueASE Estimate of p-value for observed extent of ASE (nominal if no simulations are
performed, simulations-based otherwise).

heterogeneityQ Statistic summarizing variability of locus-specific estimates of major allele fre-
quency difference if >1 locus is present. Set to NA for single-locus cases.

pValueHeterogeneity

Estimate of p-value for observed extent of variability of locus-specific estimates
of major allele frequency difference if >1 locus is present. Set to NA for single-
locus cases.

lociAllele1IsMajor

Vector of booleans, specifying for each locus whether allele1 is assigned to ma-
jor (TRUE) or minor (FALSE) haplotype (where ’major’ and ’minor’ refer to
abundances in sample1). If the data is phased (isPhased=TRUE), then all ele-
ments of the vector are TRUE if haplotype 1 is found to be major in sample1,
and are all FALSE if haplotype 1 is found to be minor. In cases of unphased
data (isPhased=FALSE), the assignment is provided by the pseudo-phasing pro-
cedure within sample1.

shiftAndAttenuateProportions 33

nullHypothesisMAF

Estimate of major allele frequency under the null hypothesis that allelic fre-
quencies are the same in both samples. This estimate is obtained by maximum
likelihood, and, in case of unphased data (isPhased=FALSE), the likelihood is
further maximized over all possible assignments of alleles to haplotypes.

lociMAFDifference

Estimate of the difference of major allele (haplotype) frequency at individual
loci. Note that ’major’ and ’minor’ distinction is made at the level of gene
haplotype in sample1.

Examples

SNVCoverageTumor=sample(10:100, 5) ## gene with 5 loci
SNVCoverageNormal=sample(10:100, 5)
SNVAllele1CountsTumor=rbinom(length(SNVCoverageTumor), SNVCoverageTumor, 0.5)
SNVAllele1CountsNormal=rbinom(length(SNVCoverageNormal), SNVCoverageNormal, 0.5)
MBASED:::runMBASED2s1aseID(lociAllele1CountsSample1=SNVAllele1CountsTumor, lociAllele2CountsSample1=SNVCoverageTumor-SNVAllele1CountsTumor, lociAllele1CountsSample2=SNVAllele1CountsNormal, lociAllele2CountsSample2=SNVCoverageNormal-SNVAllele1CountsNormal, lociAllele1NoASEProbsSample1=rep(0.5, length(SNVCoverageTumor)), lociAllele1NoASEProbsSample2=rep(0.5, length(SNVCoverageNormal)), lociRhosSample1=rep(0, length(SNVCoverageTumor)), lociRhosSample2=rep(0, length(SNVCoverageNormal)), numSim=10^6, isPhased=FALSE)

shiftAndAttenuateProportions

Helper function to adjust proportions for pre-existing allelic bias and
also to obtain estimate of proportion variance based on attenuated
read counts (adding pseudocount of 0.5 to each allele in each sample).

Description

Helper function to adjust proportions for pre-existing allelic bias and also to obtain estimate of
proportion variance based on attenuated read counts (adding pseudocount of 0.5 to each allele in
each sample).

Usage

shiftAndAttenuateProportions(countsMat, totalsMat, probsMat, rhosMat,
checkArgs = FALSE)

Arguments

countsMat matrix of observed major allele counts. Each row represents a specific genomic
locus, while each column represents a set of observed major allele counts across
loci (in practice, multiple columns represent different outcomes of count simu-
lations).

totalsMat matrix of total read counts across both alleles. The interpretation of rows and
columns is the same as for countsMat.

probsMat matrix of underlying probabilites of observing the major allele. The interpreta-
tion of rows and columns is the same as for countsMat.

34 testNumericDiff

rhosMat matrix of dispersion parameters of beta distributions for each locus. The inter-
pretation of rows and columns is the same as for countsMat.

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

Value

a list with 2 elements:

propsShifted a 1-row marix of shifted major allele frequencies
propsShiftedVars

a 1-row matrix of estimated variances of obtained MAF estimates

Examples

SNVCoverageTumor=sample(10:100,10) ## 2 genes with 5 loci each
SNVAllele1CountsTumor=rbinom(length(SNVCoverageTumor), SNVCoverageTumor, 0.5)
MBASED:::shiftAndAttenuateProportions(countsMat=matrix(SNVAllele1CountsTumor, ncol=2), totalsMat=matrix(SNVCoverageTumor, ncol=2), probsMat=matrix(rep(0.5, length(SNVCoverageTumor)), ncol=2), rhosMat=matrix(rep(0, length(SNVCoverageTumor)), ncol=2))

testNumericDiff Function that checks to see if the difference between 2 number is small
enough.

Description

Function that checks to see if the difference between 2 number is small enough.

Usage

testNumericDiff(queryVals, targetVals, cutoffFraction)

Arguments

queryVals, targetVals
vectors of values to be compared (pairwise comparison will be performed)

cutoffFraction the value of cutoff to be used to declare if the two numbers are close enough.

Details

for 2 numbers a and b, the function checks to see if |a-b|/min(a,b) <= cutoff.

Value

vector of same length as input vectors queryVals and targetVals, recording for each pair of numbers
whether they pas the cutoff (TRUE) or not (FALSE).

See Also

Other unitTestsFunctions: testQuantiles

testQuantiles 35

testQuantiles Function to test quantile equality for theoretical and observed distri-
butions

Description

Function to test quantile equality for theoretical and observed distributions

Usage

testQuantiles(theoreticalCumDist, observedCumDist, numTotalCounts,
numSEsToCheck, errorMessage)

Arguments

theoreticalCumDist

for (unspecified) value of x, P(X<=x)

observedCumDist

for (unspecified) value of x, observed Fraction(values<=x) = Num(values<=x)/Num(total
values). Actual values of x must be the same as those for corresponding entries
in theoreticalCumDist

numTotalCounts Num(total values) (see argument observedCumDist)

numSEsToCheck number of standard errors to go in each direction from theoretical quantity to
see if the estimate falls into the confidence interval

errorMessage error message to return if observed fraction falls outside of confidence interval

Details

For some random variable X, observed sample x1, x2, .., xN, and attainable value x, we compare
theoretical P(X<=x) to observed Num(xi <= x)/N.

Value

TRUE (all tests were passed, otherwise exits with error message).

See Also

Other unitTestsFunctions: testNumericDiff

36 vectorizedRbetabinomAB

vectorizedRbetabinomAB

Functions to generate beta-binomial random variables.

Description

Functions to generate beta-binomial random variables.

Usage

vectorizedRbetabinomAB(n, size, a, b, checkArgs = FALSE)

vectorizedRbetabinomMR(n, size, mu, rho, checkArgs = FALSE)

Arguments

n sample size, must be a single positive integer

size number of trials for each count to be generated in the sample, must be a vector
of positive integers

a, b vectors of shape parameters for beta distributions used to generate probability
of success for each count to be generated in the sample, must be >0

checkArgs single boolean specifying whether arguments should be checked for adherence
to specifications. DEFAULT: FALSE

mu, rho mean (a/(a+b)) and dispersion (1/(a+b+1)) parameters for beta distribution, must
be in (0,1). Value of 0 is allowed for rho and implies binomial distribution.

Details

vectorizedRbetabinomAB is the same function as rbetabinom.ab from VGAM package but it avoids
a lot of overhang and requires that arguments size, a (shape1), and b (shape2) be of length equal to
argument n.

vectorizedRbetabinomMR is a wrapper around vectorizedRbetabinomAB using mu/rho parametriza-
tion. Requires that arguments size, mu, and rho be of length equal to argument n.

Value

a numeric vector of betabinomial random variables.

See Also

Other bbFunctions: getAB, getAB, getMuRho

Other bbFunctions: getAB, getAB, getMuRho

vectorizedRbetabinomAB 37

Examples

set.seed(111)
MBASED:::vectorizedRbetabinomAB(n=10, size=rep(50,10), a=rep(1,10), b=rep(1,10))
set.seed(111)
MBASED:::vectorizedRbetabinomMR(n=10, size=rep(50,10), mu=rep(1/2,10), rho=rep(1/3,10))

Index

estimateMAF1s, 2
estimateMAF2s, 3

FT, 5
FTAdjust (FT), 5

getAB, 36
getAB (getMuRho), 6
getMuRho, 6, 36
getPFinal, 7
getSimulationPvalue, 8

isCountMajorFT (FT), 5

logLikelihoodCalculator1s, 9
logLikelihoodCalculator2s, 10

maxLogLikelihoodCalculator1s, 11
maxLogLikelihoodCalculator2s, 12
MBASED, 14
MBASED-package (MBASED), 14
MBASEDMetaAnalysis, 14
MBASEDMetaAnalysisGetMeansAndSEs, 15
MBASEDVectorizedMetaprop, 17
MBASEDVectorizedPropDiffTest, 19

runMBASED, 20
runMBASED1s, 25
runMBASED1s1aseID, 27
runMBASED2s, 29
runMBASED2s1aseID, 31

shiftAndAttenuateProportions, 33

testNumericDiff, 34, 35
testQuantiles, 34, 35

unFT (FT), 5

vectorizedRbetabinomAB, 7, 36
vectorizedRbetabinomMR, 7
vectorizedRbetabinomMR

(vectorizedRbetabinomAB), 36

38

	estimateMAF1s
	estimateMAF2s
	FT
	getMuRho
	getPFinal
	getSimulationPvalue
	logLikelihoodCalculator1s
	logLikelihoodCalculator2s
	maxLogLikelihoodCalculator1s
	maxLogLikelihoodCalculator2s
	MBASED
	MBASEDMetaAnalysis
	MBASEDMetaAnalysisGetMeansAndSEs
	MBASEDVectorizedMetaprop
	MBASEDVectorizedPropDiffTest
	runMBASED
	runMBASED1s
	runMBASED1s1aseID
	runMBASED2s
	runMBASED2s1aseID
	shiftAndAttenuateProportions
	testNumericDiff
	testQuantiles
	vectorizedRbetabinomAB
	Index

