Package 'fastreeR'

December 11, 2024

Type PackageTitle Phylogenetic, Distance and Other Calculations on VCF and Fasta
Files

Version 1.11.0

biocViews Phylogenetics, Metagenomics, Clustering

Description Calculate distances, build phylogenetic trees or perform hierarchical clustering between the samples of a VCF or FASTA file. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on the VCF or FASTA file for fast execution.

License GPL-3

Encoding UTF-8

Language en-US

LazyData false

Depends R (>= 4.4)

Imports ape, data.table, dynamicTreeCut, methods, R.utils, rJava, stats, stringr, utils

SystemRequirements Java (>= 8)

RoxygenNote 7.3.1

URL https://github.com/gkanogiannis/fastreeR, https://github.com/gkanogiannis/BioInfoJava-Utils

BugReports https://github.com/gkanogiannis/fastreeR/issues

Suggests BiocFileCache, BiocStyle, graphics, knitr, memuse, rmarkdown, spelling, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/fastreeR

git_branch devel

git_last_commit 5904abc

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-12-11

Author Anestis Gkanogiannis [aut, cre] (ORCID: https://orcid.org/0000-0002-6441-0688>)

Maintainer Anestis Gkanogiannis <anestis@gkanogiannis.com>

Contents

fastreeR-package	2
dist2clusters	3
dist2tree	4
fasta2dist	5
tree2clusters	6
vcf2clusters	
vcf2dist	
vcf2istats	
vcf2tree	12
	14

Index

fastreeR-packagefastreeR: Phylogenetic, Distance and Other Calculations on VCF and
Fasta Files

Description

Calculate distances, build phylogenetic trees or perform hierarchical clustering between the samples of a VCF or FASTA file. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on the VCF or FASTA file for fast execution.

Author(s)

Maintainer: Anestis Gkanogiannis <anestis@gkanogiannis.com> (ORCID)

See Also

Useful links:

- https://github.com/gkanogiannis/fastreeR
- https://github.com/gkanogiannis/BioInfoJava-Utils
- Report bugs at https://github.com/gkanogiannis/fastreeR/issues

2

Description

Performs Hierarchical Clustering on a distance matrix (i.e. calculated with vcf2dist or fasta2dist) and generates a phylogenetic tree with agglomerative Neighbor Joining method (complete linkage) (as in dist2tree). The phylogenetic tree is then pruned with cutreeDynamic to get clusters (as in tree2clusters).

Usage

```
dist2clusters(inputDist, cutHeight = NULL, minClusterSize = 1, extra = TRUE)
```

Arguments

inputDist	Input distances file location (generated with vcf2dist or fasta2dist). File can be gzip compressed. Or a dist distances object.
cutHeight	Define at which height to cut tree. Default automatically defined.
minClusterSize	Minimum size of clusters. Default 1.
extra	Boolean whether to use extra parameters for the cutreeDynamic.

Value

A list of :

- · character vector of the generated phylogenetic tree in Newick format
- character vector of the clusters. Each row contains data for a cluster, separated by space. The id of the cluster, the size of the cluster (number of elements) and the names of its elements, Cluster id 0 contains all the objects not assigned to a cluster (singletons). Example clusters output :

0	3	Sample1	Sample2	Sample3
1	3	Sample4	Sample5	Sample6
2	2	Sample7	Sample8	
3	2	Sample9	Sample0	

Author(s)

Anestis Gkanogiannis, <anestis@gkanogiannis.com>

References

Java implementation: https://github.com/gkanogiannis/BioInfoJava-Utils

Examples

```
my.clust <- dist2clusters(
    inputDist =
        system.file("extdata", "samples.vcf.dist.gz", package = "fastreeR")
)
```

dist2tree

Generate phylogenetic tree from samples of a distance matrix

Description

Performs Hierarchical Clustering on a distance matrix (i.e. calculated with vcf2dist or fasta2dist) and generates a phylogenetic tree with agglomerative Neighbor Joining method (complete linkage).

Usage

dist2tree(inputDist)

Arguments

inputDist	Input distances file location (generated with vcf2dist or fasta2dist). File can
	be gzip compressed. Or a dist distances object.

Value

A character vector of the generated phylogenetic tree in Newick format.

Author(s)

Anestis Gkanogiannis, <anestis@gkanogiannis.com>

References

Java implementation: https://github.com/gkanogiannis/BioInfoJava-Utils

Examples

```
my.tree <- dist2tree(
    inputDist =
        system.file("extdata", "samples.vcf.dist.gz", package = "fastreeR")
)
```

4

fasta2dist

Description

This function calculates a d2_S type dissimilarity measurement between the n sequences (which can represent samples) of a FASTA file. See doi:10.1186/s1285901611863 for more details.

Usage

```
fasta2dist(
   ...,
   outputFile = NULL,
   threads = 2,
   kmer = 6,
   normalize = FALSE,
   compress = TRUE
)
```

Arguments

	Input fasta files locations (uncompressed or gzip compressed).
outputFile	Output distances file location.
threads	Number of java threads to use.
kmer	Kmer length to use for analyzing fasta sequences.
normalize	Normalize on sequences length.
compress	Compress output (adds .gz extension).

Value

A dist distances object of the calculation.

Author(s)

Anestis Gkanogiannis, <anestis@gkanogiannis.com>

References

Java implementation: https://github.com/gkanogiannis/BioInfoJava-Utils

Examples

```
my.dist <- fasta2dist(
    inputfile = system.file("extdata", "samples.fasta.gz",
        package = "fastreeR"
    )
)</pre>
```

tree2clusters

Description

The phylogenetic tree is pruned with cutreeDynamic to get clusters.

Usage

```
tree2clusters(
  treeStr,
  treeDistances = NULL,
  treeLabels = NULL,
  cutHeight = NULL,
  minClusterSize = 1,
  extra = TRUE
)
```

Arguments

treeStr	A character vector of a phylogenetic tree in Newick format
treeDistances	numeric matrix of distances, that were used to generate the tree. If NULL, it will be inferred from tree branch lengths.
treeLabels	A character vector of tree leaf labels.
cutHeight	Define at which height to cut tree. Default automatically defined.
minClusterSize	Minimum size of clusters. Default 1.
extra	Boolean whether to use extra parameters for the cutreeDynamic.

Value

• character vector of the clusters. Each row contains data for a cluster, separated by space. The id of the cluster, the size of the cluster (number of elements) and the names of its elements, Cluster id 0 contains all the objects not assigned to a cluster (singletons). Example clusters output :

0	3	Sample1	Sample2	Sample3
1	3	Sample4	Sample5	Sample6
2	2	Sample7	Sample8	
3	2	Sample9	Sample0	

Author(s)

Anestis Gkanogiannis, <anestis@gkanogiannis.com>

vcf2clusters

References

Java implementation: https://github.com/gkanogiannis/BioInfoJava-Utils

Examples

```
my.clust <- tree2clusters(
    treeStr = dist2tree(
        inputDist = system.file("extdata", "samples.vcf.dist.gz",
            package = "fastreeR"
        )
    )
)</pre>
```

vcf2clusters

Perform Hierarchical Clustering and tree pruning on samples of VCF file

Description

Performs Hierarchical Clustering on a distance matrix calculated as in vcf2dist and generates a phylogenetic tree with agglomerative Neighbor Joining method (complete linkage) (as in dist2tree). The phylogenetic tree is then pruned with cutreeDynamic to get clusters (as in tree2clusters).

Usage

```
vcf2clusters(
    inputFile,
    threads = 2,
    ignoreMissing = FALSE,
    onlyHets = FALSE,
    ignoreHets = FALSE,
    cutHeight = NULL,
    minClusterSize = 1,
    extra = TRUE
)
```

Arguments

inputFile	Input vcf file location (uncompressed or gzip compressed).
threads	Number of java threads to use.
ignoreMissing	Ignore variants with missing data (./. or . .)
onlyHets	Only calculate on variants with heterozygous calls.
ignoreHets	Only calculate on variants with homozygous calls.
cutHeight	Define at which height to cut tree. Default automatically defined.
minClusterSize	Minimum size of clusters. Default 1.
extra	Boolean whether to use extra parameters for the cutreeDynamic.

Details

Biallelic or multiallelic (maximum 7 alternate alleles) SNP and/or INDEL variants are considered, phased or not. Some VCF encoding examples are:

- heterozygous variants : 1/0 or 0/1 or 0/2 or 1 | 0 or 0 | 1 or 0 | 2
- homozygous to the reference allele variants : 0/0 or 0|0
- homozygous to the first alternate allele variants : 1/1 or 1|1

If there are n samples and m variants, an nxn zero-diagonal symmetric distance matrix is calculated. The calculated cosine type distance $(1-\cos ine_similarity)/2$ is in the range [0,1] where value 0 means completely identical samples (cosine is 1), value 0.5 means perpendicular samples (cosine is 0) and value 1 means completely opposite samples (cosine is -1).

The calculation is performed by a Java back-end implementation, that supports multi-core CPU utilization and can be demanding in terms of memory resources. By default a JVM is launched with a maximum memory allocation of 512 MB. When this amount is not sufficient, the user needs to reserve additional memory resources, before loading the package, by updating the value of the java.parameters option. For example in order to allocate 4GB of RAM, the user needs to issue options(java.parameters="-Xmx4g") before library(fastreeR).

Value

A list of :

- dist distances object.
- · character vector of the generated phylogenetic tree in Newick format
- character vector of the clusters. Each row contains data for a cluster, separated by space. The id of the cluster, the size of the cluster (number of elements) and the names of its elements, Cluster id 0 contains all the objects not assigned to a cluster (singletons). Example clusters output :

0	3	Sample1	Sample2	Sample3
1	3	Sample4	Sample5	Sample6
2	2	Sample7	Sample8	
3	2	Sample9	Sample0	

Author(s)

Anestis Gkanogiannis, <anestis@gkanogiannis.com>

References

Java implementation: https://github.com/gkanogiannis/BioInfoJava-Utils

vcf2dist

Examples

```
my.clust <- vcf2clusters(
    inputFile = system.file("extdata", "samples.vcf.gz",
        package = "fastreeR"
    )
)
```

vcf2dist

Calculate distances between samples of a VCF file

Description

This function calculates a cosine type dissimilarity measurement between the n samples of a VCF file.

Usage

```
vcf2dist(
    inputFile,
    outputFile = NULL,
    threads = 2,
    ignoreMissing = FALSE,
    onlyHets = FALSE,
    ignoreHets = FALSE,
    compress = FALSE
)
```

Arguments

inputFile	Input vcf file location (uncompressed or gzip compressed).
outputFile	Output distances file location.
threads	Number of java threads to use.
ignoreMissing	Ignore variants with missing data (./. or . .)
onlyHets	Only calculate on variants with heterozygous calls.
ignoreHets	Only calculate on variants with homozygous calls.
compress	Compress output (adds .gz extension).

Details

Biallelic or multiallelic (maximum 7 alternate alleles) SNP and/or INDEL variants are considered, phased or not. Some VCF encoding examples are:

- heterozygous variants : 1/0 or 0/1 or 0/2 or 1 | 0 or 0 | 1 or 0 | 2
- homozygous to the reference allele variants : 0/0 or 0|0
- homozygous to the first alternate allele variants : 1/1 or 1|1

If there are n samples and m variants, an nxn zero-diagonal symmetric distance matrix is calculated. The calculated cosine type distance $(1-\cos n_s)/2$ is in the range [0,1] where value 0 means completely identical samples (cosine is 1), value 0.5 means perpendicular samples (cosine is 0) and value 1 means completely opposite samples (cosine is -1).

The calculation is performed by a Java backend implementation, that supports multi-core CPU utilization and can be demanding in terms of memory resources. By default a JVM is launched with a maximum memory allocation of 512 MB. When this amount is not sufficient, the user needs to reserve additional memory resources, before loading the package, by updating the value of the java.parameters option. For example in order to allocate 4GB of RAM, the user needs to issue options(java.parameters="-Xmx4g") before library(fastreeR).

Output file, if provided, will contain n+1 lines. The first line contains the number n of samples and number m of variants, separated by space. Each of the subsequent n lines contains n+1 values, separated by space. The first value of each line is a sample name and the rest n values are the calculated distances of this sample to all the samples. Example output file of the distances of 3 samples calculated from 1000 variants:

3 1000			
Sample1	0.0	0.5	0.2
Sample2	0.5	0.0	0.9
Sample3	0.2	0.9	0.0

Value

A dist distances object of the calculation.

Author(s)

Anestis Gkanogiannis, <anestis@gkanogiannis.com>

References

Java implementation: https://github.com/gkanogiannis/BioInfoJava-Utils

Examples

```
my.dist <- vcf2dist(
    inputFile = system.file("extdata", "samples.vcf.gz",
        package = "fastreeR"
    )
)
```

10

vcf2istats

Description

Only biallelic SNPs are considered. For each sample, the following statistics are calculated :

- INDIV : Sample name
- N_SITES : Total number of SNPs
- N_HET : Number of SNPs with heterozygous call (0/1 or 0|1 or 1/0 or 1|0)
- N_ALT : Number of SNPs with alternate homozygous call (1/1 or 1|1)
- N_REF : Number of SNPs with reference homozygous call (0/0 or 0|0)
- N_MISS : Number of SNPs with missing call (. /. or . | .)
- P_HET : Percentage of heterozygous calls
- P_ALT : Percentage of alternate homozygous calls
- P_REF : Percentage of reference homozygous calls
- P_MISS : Percentage of missing calls (missing rate)

Usage

```
vcf2istats(inputFile, outputFile = NULL)
```

Arguments

inputFile	Input vcf file location (uncompressed or gzip compressed).
outputFile	Output samples statistics file location.

Value

A data.frame of sample statistics.

Author(s)

Anestis Gkanogiannis, <anestis@gkanogiannis.com>

References

Java implementation: https://github.com/gkanogiannis/BioInfoJava-Utils

Examples

```
my.istats <- vcf2istats(
    inputFile =
        system.file("extdata", "samples.vcf.gz", package = "fastreeR")
)</pre>
```

vcf2tree

Description

This function calculates a distance matrix between the samples of a VCF file as in vcf2dist and performs Hierarchical Clustering on this distance matrix as in dist2tree. A phylogenetic tree is calculated with agglomerative Neighbor Joining method (complete linkage).

Usage

```
vcf2tree(
    inputFile,
    threads = 2,
    ignoreMissing = FALSE,
    onlyHets = FALSE,
    ignoreHets = FALSE
)
```

Arguments

inputFile	Input vcf file location (uncompressed or gzip compressed).
threads	Number of java threads to use.
ignoreMissing	Ignore variants with missing data (./. or . .)
onlyHets	Only calculate on variants with heterozygous calls.
ignoreHets	Only calculate on variants with homozygous calls.

Details

Biallelic or multiallelic (maximum 7 alternate alleles) SNP and/or INDEL variants are considered, phased or not. Some VCF encoding examples are:

- heterozygous variants : 1/0 or 0/1 or 0/2 or 1 | 0 or 0 | 1 or 0 | 2
- homozygous to the reference allele variants : 0/0 or 0|0
- homozygous to the first alternate allele variants : 1/1 or 1|1

If there are n samples and m variants, an nxn zero-diagonal symmetric distance matrix is calculated. The calculated cosine type distance $(1-\cos ine_similarity)/2$ is in the range [0,1] where value 0 means completely identical samples (cosine is 1), value 0.5 means perpendicular samples (cosine is 0) and value 1 means completely opposite samples (cosine is -1).

The calculation is performed by a Java backend implementation, that supports multi-core CPU utilization and can be demanding in terms of memory resources. By default a JVM is launched with a maximum memory allocation of 512 MB. When this amount is not sufficient, the user needs to reserve additional memory resources, before loading the package, by updating the value of the java.parameters option. For example in order to allocate 4GB of RAM, the user needs to issue options(java.parameters="-Xmx4g") before library(fastreeR).

vcf2tree

Value

A character vector of the generated phylogenetic tree in Newick format.

Author(s)

Anestis Gkanogiannis, <anestis@gkanogiannis.com>

References

Java implementation: https://github.com/gkanogiannis/BioInfoJava-Utils

Examples

```
my.tree <- vcf2tree(
    inputFile = system.file("extdata", "samples.vcf.gz",
        package = "fastreeR"
    )
)</pre>
```

Index

* **internal** fastreeR-package, 2

character, *3*, *4*, *6*, *8*, *13* cutreeDynamic, *3*, *6*, *7*

data.frame, dist, *3–5*, *8*, dist2clusters, 3 dist2tree, *3*, *4*, *7*,

fasta2dist, 3, 4, 5
fastreeR (fastreeR-package), 2
fastreeR-package, 2

matrix, $\boldsymbol{6}$

tree2clusters, 3, 6, 7

vcf2clusters,7 vcf2dist,*3*,*4*,7,9,*12* vcf2istats,11 vcf2tree,12